Abstract
In this paper, we propose a novel estimation and decoding scheme for power-line communication (PLC) systems in impulsive noise environments. The proposed scheme is based on the turbo coding combined with adaptive noise compensation to reduce burst errors and multipath effects. For this purpose, the PLC channel and noise models are introduced, then, the turbo encoder/decoder are inserted in the mapper/demapper and the pilot insertion block for the sake of enhancing preliminary estimation of the transmitted orthogonal frequency division multiplexing signals. The proposed impulsive noise compensator is based on the estimation of the impulse bursts using a new blanking/clipping function, and on the estimation of the signal to impulse noise ratio and the peak to average power ratio. Simulation results illustrate that receivers with combined turbo coding and the proposed noise compensator drastically outperform existing receivers under impulsive noise. In comparison to some existing schemes, the proposed scheme reaches its perfect performance in a reduced 15-paths environment, when the bit error rate and mean square error performance are tested. The improvements in SNR performance are more than 16 dB for BPSK modulation and can reach 12–20 dB for 16-QAM modulation, when a high impulsive noise level is considered.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
D’Alessandro, S., Tonello, A. M., & Lampe, L. (2012). Adaptive pulse-shaped OFDM with application to in-home power line communications. Telecommunication Systems, 51(1), 3–13.
Canete, F. J., Cortes, J. A., Diez, L., & Entrambasaguas, J. T. (2003). Modeling and evaluation of the indoor power line transmission medium. IEEE Communications Magazine, 41(4), 41–47.
Kon, L., Razafferson, R., Dmoulin, B., Moulin, F., Gauthier, F., & Zeddam, A. (2005). characterization of electromagnetic emission due to power line communication (plc) networks. Annals of Telecommunications, 60(9–10), 1169–1196.
Yue, Z. M. (2014). Mitigation of the moving radio interferences in the OFDM-based power line communication channels in China. International Journal of Communication Systems, doi:10.1002/dac.2831.
Marx, F., Farah, J., & Francis, C. (2005). Iterative correction of phase noise and nonlinear distortion in orthogonal frequency division multiplexing (OFDM) systems. Annals of Telecommunications, 60(9–10), 1197–1218.
Nikolova, Z., Poulkov, V., Iliev, G., & Egiazarian, K. (2010). New adaptive complex IIR filters and their application in OFDM systems. Signal Image and Video Processing, 4(2), 197–207.
Pinchas, M., & Bobrovsky, B. Z. (2010). Analytic threshold calculation of frequency estimation for OFDM communication. Signal Image and Video Processing, 4(2), 187–195.
Zimmermann, M., & Dostert, K. (2002). A multipath model for the powerline channel. IEEE Transactions on Communications, 50(4), 553–559.
Tlich, M., Zeddam, A., Moulin, F., & Gauthier, F. (2008). Indoor power-line communications channel characterization Up to 100 MHzPart I: One-parameter deterministic model. IEEE Transactions on Power Delivery, 23(3), 1392–1401.
Melit, M., Nekhoul, B., Sekki, D., & Kerroum, K. (2012). Modeling of the transmission of power line communication signal through the power electric transformer. Annals of Telecommunications, 67(9–10), 447–454.
Galli, S. (2011). A novel approach to the statistical modeling of wireline channels. IEEE Transactions on Communications, 59(5), 1332–1345.
Tonello, A. M. (2007). Wideband impulse modulation and receiver algorithms for multiuser power line communications. EURASIP Journal on Advances in Signal Processing, 2007, doi:10.1155/2007/96747.
Middleton, D. (1977). Statistical-physical models of electromagnetic interference. IEEE Transactions on Electromagnetic Compatibility, 19(3), 106–127.
Shebl, S., Soliman, N. F., Elfishawy, N. A., Abou-El-Azmd, A. E., Alshebeili, S. A., & Abdelsamie, F. E. (2013). Performance enhancement of powerline communication systems with efficient low density parity-checkcodes, noise removal, equalization, and chaotic interleaving. Digital Signal Processing, 23(6), 1933–1944.
Chan, M., & Donaldson, R. (1989). Amplitude, width, and interarrival distributions for noise impulses on intrabuilding power line communication networks. IEEE Transactions on Electromagnetic Compatibility, 31(3), 320–323.
Herath, S. P., Tran, N., & Le-Ngoc, T. (2014). Optimal signaling scheme and capacity limit of PLC under Bernoulli-Gaussian impulsive noise. IEEE Transactions on Power Delivery, 30(1), 97–105.
Nassar, M., Jing, L., Mortazavi, Y., Dabak, A., Kim, I. H., & Evans, B. L. (2012). Local utility powerline communications in the 3–500 kHz band: Channel impairments, noise, and standards. IEEE Signal Processing Magazine, 29(5), 116–127.
Ahadiat, M. R., Azmi, P., & Haghbin, A. (2014). Impulsive noise estimation and suppression in OFDM systems over in-home power line channels. International Journal of Communication Systems, doi:10.1002/dac.2831.
Liu, R., Kung, T. L., & Parhi, K. K. (2014). Impulse noise correction in OFDM systems. Journal of Signal Processing Systems, 74(2), 245–262.
Zhidkov, S. V. (2008). Analysis and comparison of several simple impulsive noise mitigation schemes for OFDM receivers. IEEE Transactions on Communications, 56(1), 5–9.
Zhidkov, S. V. (2003). Impulsive noise suppression in OFDM based communication systems. IEEE Transactions on Consumer Electronics, 49(4), 944–948.
Jia, J., & Meng, J. (2014). A dual protection scheme for impulsive noise suppression in OFDM systems. International Journal of Electronics and Communications, 68(1), 51–58.
M’aad, H. B., Goupil, A., Clavier, L., & Gelle, G. (2013). Clipping demapper for LDPC decoding in impulsive channel. IEEE Communication Letters, 17(5), 968–971.
Himeur, Y., & Boukabou, A. (2014). Noise mitigation over powerline communication using LDPC-convolutional code and fusion of mean and median filters. In Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications (SIGMAP) (pp. 5–13).
Trifina, L., Munteanu, V., & Tarniceriu, D. G. (2007). Turbo codes with modified welch-costas interleavers. Annals of Telecommunications, 62(9–10), 1045–1052.
Chuah, T. C. (2007). Adaptive robust turbo equalization for power-line communications. IEEE Transactions on Power Delivery, 22(4), 2172–2179.
Kim, E. C., Seo, S. I., Heo, J., & Kim, J. Y. (2010). Performance of double binary turbo coding for high speed PLC systems. IEEE Transactions on Consumer Electronics, 56(3), 1211–1217.
Balbuena-Campuzano, C. A., & García-Ugalde, F. J. (2014). Performance of HSR and QPP-based interleavers for turbo coding on power line communication systems. Signal Image and Video Processing, 8(4), 615–624.
Caire, G., Al-Naffouri, T. Y., & Narayanan. A. K. (2008). Impulse noise cancellation in OFDM: An application of compressed sensing. In IEEE International Symposium on Information Theory (ISIT) (pp. 1293–1297).
Al-Naffouri, T. Y., Quadeer, A. A., Al-Shaalan, F. F., & Hmida, H. (2011). Impulsive noise estimation and cancellation in DSL using compressive sampling. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2133–2136).
Al-Naffouri, T. Y., Quadeer, A. A., & Caire, G. (2014). Impulse noise estimation and removal for OFDM systems. IEEE Transactions on Communications, 62(3), 976–989.
Lin, J., Nassar, M., & Evans, B. L. (2013). Impulsive noise mitigation in powerline communications using sparse bayesian learning. IEEE J. Sel. Areas. Commun., 31(7), 1172–1183.
Nassar, M., Schniter, P., & Evans, B. L. (2014). A factor graph approach to joint OFDM channel estimation and decoding in impulsive noise environments. IEEE Transactions on Signal Processing, 62(6), 1576–1589.
Meng, H., Guan, Y. L., & Chen, S. (2005). Modeling and analysis of noise effects on broad-band power-line communications. IEEE Transactions on Power Delivery, 20(2), 630–637.
Nouvel, F., & Tanguy, P. (2009). What is about future high speed power line communication systems for in-vehicles networks?. In The 7th Internationl Conferece on Information, Communication and Signal Processing (ICICS) (pp. 1–6).
Guerrieri, L., Bisaglia, P., Dell Amico, G., & Guerrini, E. (2007). Performance of the turbo coded HomePlug AV system over power-line channels. In IEEE International Symposium on Power Line Communication and Its Applications (ISPLC) (pp. 138–143).
Ferreira, H. C., Lampe, L., Newbury, J., & Swart, T. G. (2010). Power line communications: Theory and applications for narrowband and broadband communications over power lines. West Sussex: Wiley. 2010.
Peled, A., & Ruiz, A. (1980). Frequency domain data transmission using reduced computational complexity algorithms, Acoustics. In IEEE International Conference on Speech, and Signal Processing (ICASSP) (pp. 964–967).
Hooijen, O. G. (1998). On the channel capacity of the residential power circuit used as a digital communications medium. IEEE Communications Letters, 2(10), 267–268.
Vaseghi, S. V. (2008). Advanced digital signal processing and noise reduction (4th ed.). West Sussex: Wiley.
Woodard, J. P., & Hanzo, L. (2000). Comparative study of turbo decoding techniques: An overview. IEEE Transactions on Vehicular Technology, 49(6), 2208–2233.
Hanzo, L., Liew, T. H., & Yeap, B. L. (2002). Turbo coding, turbo equalisation and space-time coding for transmission over fading channels. Chichester: Wiley.
Acknowledgments
This Project was financially supported by the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) of Algeria (PNR 13/u18/4368)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Himeur, Y., Boukabou, A. OFDM-based power-line communication enhancement using a turbo coded adaptive impulsive noise compensator. Telecommun Syst 62, 481–494 (2016). https://doi.org/10.1007/s11235-015-0087-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-015-0087-5