Skip to main content

Advertisement

Log in

A comparative analysis of energy conservation approaches in hybrid wireless sensor networks data collection protocols

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Wireless sensor network (WSN) has become part of human life as it is used in several applications including healthcare, environment and agricultural, public safety, military, transportation as well as in the industry. In spite of its usefulness, it is challenging to maintain long-term operations due to limited battery life. Several energy efficient protocols have been designed to prolong the network lifetime. The integration of mobility technology with the conventional static sensor network, described as hybrid WSN, promises a new solution that balances energy consumption among sensor nodes and extends the network lifetime. To the best of our knowledge, there has not been as yet an evaluation of the energy-efficiency of the data collection approaches in terms of the energy conservation techniques adopted. In this paper, the architecture of data collection approaches in WSN is discussed. Then, we propose and discuss a taxonomy of types of data collection in WSN. We further present and discuss in details a thematic taxonomy of energy conservation techniques adopted in the various hybrid WSN data collection approaches. Consequently, we compare the different energy conservation approaches that minimize energy consumption in hybrid WSN, highlighting their pros and cons. In conclusion, we point out open research challenges and future directions in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Akhtar, F., & Rehmani, M. H. (2015). Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renewable & Sustainable Energy Reviews, 45, 769–784.

    Article  Google Scholar 

  2. Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.

    Article  Google Scholar 

  3. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  4. Ammari, H. M. (2012). On the problem of K-coverage in mission-oriented mobile wireless sensor networks. Computer Networks, 56(7), 1935–1950.

    Article  Google Scholar 

  5. Ammari, H. M. (2013). Joint K-coverage and data gathering in sparsely deployed sensor networks: Impact of purposeful mobility and heterogeneity. ACM Transactions on Sensor Networks, 10(1), 8.

    Article  Google Scholar 

  6. Anastasi, G., Borgia, E., Conti, M., & Di Francesco, M. (2011). Reliable data delivery in sparse wsns with multiple mobile sinks: An experimental analysis. In 2011 IEEE Symposium on Computers and Communications (ISCC) (pp. 698–705).

  7. Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  8. Anisi, M. H., Abdul-Salaam, G., & Abdullah, A. H. (2015). A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture. Precision Agriculture, 16(2), 216–238.

    Article  Google Scholar 

  9. Anisi, M. H., Abdullah, A. H., Coulibaly, Y., & Razak, S. A. (2013). Edr: Efficient data routing in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 12(1), 46–55.

    Article  Google Scholar 

  10. Anisi, M. H., Abdullah, A. H., Razak, S. A., & Ngadi, M. A. (2012). An overview of data routing approaches for wireless sensor networks. Sensors, 12(4), 3964–3996.

    Article  Google Scholar 

  11. Benharref, A., & Serhani, M. A. (2014). Novel cloud and SOA-based framework for E-health monitoring using wireless biosensors. IEEE Journal of Biomedical and Health Informatics, 18(1), 46–55.

    Article  Google Scholar 

  12. Chen, L., Wang, J., Peng, X., & Kui, X. (2015). An energy-efficient and relay hop bounded mobile data gathering algorithm in wireless sensor networks. International Journal of Distributed Sensor Networks.

  13. Chen, S., Coolbeth, M., Dinh, H., Kim, Y.-A., & Wang, B. (2009). Data collection with multiple sinks in wireless sensor networks. In B. Liu, A. Bestavros, D.-Z. Du, & J. Wang (Eds.), Wireless algorithms, systems, and applications (pp. 284–294). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  14. Chen, Y.-L., Wang, N.-C., Shih, Y.-N., & Lin, J.-S. (2013). Improving low-energy adaptive clustering hierarchy architectures with sleep mode for wireless sensor networks. Wireless Personal Communications, 75, 1–20.

    Article  Google Scholar 

  15. Chen, Y., Tang, Y., Xu, G., Qian, H., & Xu, Y. (2011). A data gathering algorithm based on swarm intelligence and load balancing strategy for mobile sink. In 2011 9th World Congress on Intelligent Control and Automation (WCICA) (pp. 1002–1007).

  16. Chen, Y. P., Liestman, A. L., & Liu, J. (2006). A hierarchical energy-efficient framework for data aggregation in wireless sensor networks. IEEE Transactions on Vehicular Technology, 55(3), 789–796.

    Article  Google Scholar 

  17. Cheng, C.-T., & Tse, C. K. (2013). A delay-aware network structure for wireless sensor networks with consecutive data collection processes. IEEE Sensors Journal, 13(6), 2413–2422.

    Article  Google Scholar 

  18. Costa, D. G., & Guedes, L. A. (2010). The coverage problem in video-based wireless sensor networks: A survey. Sensors, 10(9), 8215–8247.

    Article  Google Scholar 

  19. Danpu, L., Kailin, Z., & Jie, D. (2013). Energy-efficient transmission scheme for mobile data gathering in wireless sensor networks. Communications, China, 10(3), 114–123.

    Article  Google Scholar 

  20. Di Francesco, M., Das, S. K., & Anastasi, G. (2011). Data collection in wireless sensor networks with mobile elements: A survey. ACM Transactions on Sensor Networks, 8(1), 7.

    Article  Google Scholar 

  21. Ebrahimi, D., & Assi, C. (2014). Compressive data gathering using random projection for energy efficient wireless sensor networks. Ad Hoc Networks, 16, 105–119.

    Article  Google Scholar 

  22. Eu, Z. A., Tan, H.-P., & Seah, W. K. (2010). Opportunistic routing in wireless sensor networks powered by ambient energy harvesting. Computer Networks, 54(17), 2943–2966.

    Article  Google Scholar 

  23. Faheem, Y., Boudjit, S., & Chen, K. (2011). Dynamic sink location update scope control mechanism for mobile sink wireless sensor networks. In 2011 8th International Conference on Wireless On-Demand Network Systems and Services (WONS) (pp. 171–178).

  24. Fan, K.-W., Zheng, Z., & Sinha, P. (2008). Steady and fair rate allocation for rechargeable sensors in perpetual sensor networks. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems (pp. 239–252).

  25. Farris, I., Militano, L., Iera, A., Molinaro, A., & Spinella, S. C. (2015). Tag-based cooperative data gathering and energy recharging in wide area rfid sensor networks. Ad Hoc Networks.

  26. Fernandes, M. A., Matos, S. G., Peres, E., Cunha, C. R., Lopez, J. A., Ferreira, P. J. S. G., et al. (2013). A framework for wireless sensor networks management for precision viticulture and agriculture based on IEEE 1451 standard. Computers and Electronics in Agriculture, 95, 19–30.

    Article  Google Scholar 

  27. Ganeriwal, S., Kansal, A., & Srivastava, M. B. (2004). Self aware actuation for fault repair in sensor networks. robotics and automation, 2004. In IEEE International Conference on Proceedings ICRA’04. 2004 (pp. 5244–5249).

  28. Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2013). Saving energy and improving communications using cooperative group-based wireless sensor networks. Telecommunication Systems, 52(4), 2489–2502.

    Article  Google Scholar 

  29. Gomaa, R., Adly, I., Sharshar, K., Safwat, A., & Ragai, H. (2013). Zigbee wireless sensor network for radiation monitoring at nuclear facilities. In 2013 6th Joint IFIP Wireless and Mobile Networking Conference (WMNC) (pp. 1–4).

  30. Gu, Y., Bozdag, D., Ekici, E., Özgüner, F., & Lee, C.-G. (2005). Partitioning based mobile element scheduling in wireless sensor networks. In SECON (pp. 386–395).

  31. Guo, S., Wang, C., & Yang, Y. (2014). Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2836–2852.

    Article  Google Scholar 

  32. Ha, I., Djuraev, M., & Ahn, B. (2014). An energy-efficient data collection method for wireless multimedia sensor networks. International Journal of Distributed Sensor Networks.

  33. Halder, S., & Das, B. S. (2014). Enhancement of wireless sensor network lifetime by deploying heterogeneous nodes. Journal of Network and Computer Applications, 38, 106–124.

    Article  Google Scholar 

  34. Han, G., Guo, H., Zhang, C., & Shu, L. (2014). Parameter optimisation in duty-cycled wireless sensor networks under expected network lifetime. International Journal of Ad Hoc and Ubiquitous Computing, 15(1), 57–67.

    Article  Google Scholar 

  35. He, L., Fu, L., Zheng, L., Gu, Y., Cheng, P., Chen, J., & Pan, J. (2014). Esync: An energy synchronized charging protocol for rechargeable wireless sensor networks. In Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc Networking and Computing (pp. 247–256).

  36. Hu, Y., Ding, Y., Hao, K., Ren, L., & Han, H. (2014). An immune orthogonal learning particle swarm optimisation algorithm for routing recovery of wireless sensor networks with mobile sink. International Journal of Systems Science, 45(3), 337–350.

    Article  Google Scholar 

  37. Incel, O. D., Ghosh, A., Krishnamachari, B., & Chintalapudi, K. (2012). Fast data collection in tree-based wireless sensor networks. IEEE Transactions on Mobile Computing, 11(1), 86–99.

    Article  Google Scholar 

  38. Iwanicki, K., & Van Steen, M. (2009). Multi-hop cluster hierarchy maintenance in wireless sensor networks: A case for Gossip-rased protocols. In U. Roedig & C. J. Sreenan (Eds.), Wireless sensor networks, proceedings (pp. 102–117).

  39. Jawhar, I., Mohamed, N., Al-Jaroodi, J., & Zhang, S. (2014). A framework for using unmanned aerial vehicles for data collection in linear wireless sensor networks. Journal of Intelligent and Robotic Systems: Theory and Applications, 74(1–2), 437–453.

    Article  Google Scholar 

  40. Jia, L., Rajaraman, R., & Scheideler, C. (2003). On local algorithms for topology control and routing in ad hoc networks. In Proceedings of the 15th Annual ACM Symposium on Parallel Algorithms and Architectures (pp. 220–229).

  41. Jin, W., Yue, Y., Jianwei, Z., Sungyoung, L., & Sherratt, R. S. (2013). Mobility based energy efficient and multi-sink algorithms for consumer home networks. IEEE Transactions on Consumer Electronics, 59(1), 77–84.

    Article  Google Scholar 

  42. Khan, A. W., Abdullah, A. H., Anisi, M. H., & Bangash, J. I. (2014). A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks. Sensors, 14(2), 2510–2548.

    Article  Google Scholar 

  43. Khan, A. W., Abdullah, A. H., Razzaque, M. A., & Bangash, J. I. (2015a). Vgdra: A virtual grid-based dynamic routes adjustment scheme for mobile sink-based wireless sensor networks. IEEE Sensors Journal, 15(1), 526–534.

    Article  Google Scholar 

  44. Khan, A. W., Abdullah, A. H., Razzaque, M. A., Bangash, J. I., & Altameem, A. (2015b). Vgdd: A virtual grid based data dissemination scheme for wireless sensor networks with mobile sink. International Journal of Distributed Sensor Networks.

  45. Khan, J. A., Qureshi, H. K., & Iqbal, A. (2015c). Energy management in wireless sensor networks: A survey. Computers & Electrical Engineering, 41, 159–176.

    Article  Google Scholar 

  46. Konstantopoulos, C., Pantziou, G., Gavalas, D., Mpitziopoulos, A., & Mamalis, B. (2012). A Rendezvous-based approach enabling energy-efficient sensory data collection with mobile sinks. IEEE Transactions on Parallel and Distributed Systems, 23(5), 809–817.

    Article  Google Scholar 

  47. Kumar, D., & Patel, R. (2011). Multi-hop data communication algorithm for clustered wireless sensor networks. International Journal of Distributed Sensor Networks.

  48. Lambrou, T. P., & Panayiotou, C. G. (2013). Collaborative path planning for event search and exploration in mixed sensor networks. The International Journal of Robotics Research, 32(12), 1424–1437.

    Article  Google Scholar 

  49. Larios, D. F., Barbancho, J., Sevillano, J. L., Rodriguez, G., Molina, F. J., Gasull, V. G., et al. (2013). Five years of designing wireless sensor networks in the Donana biological reserve (Spain): An applications approach. Sensors, 13(9), 12044–12069.

    Article  Google Scholar 

  50. Levin, L., Efrat, A., & Segal, M. (2014). Collecting data in ad-hoc networks with reduced uncertainty. Ad Hoc Networks, 17, 71–81.

    Article  Google Scholar 

  51. Li, J., & Mohapatra, P. (2007). Analytical modeling and mitigation techniques for the energy hole problem in sensor networks. Pervasive and Mobile Computing, 3(3), 233–254.

    Article  Google Scholar 

  52. Li, Z., Wang, N., Franzen, A., Taher, P., Godsey, C., Zhang, H., et al. (2014). Practical deployment of an in-field soil property wireless sensor network. Computer Standards & Interfaces, 36(2), 278–287.

    Article  Google Scholar 

  53. Liang, W., Luo, J., & Xu, X. (2013). Network lifetime maximization for time-sensitive data gathering in wireless sensor networks with a mobile sink. Wireless Communications & Mobile Computing, 13(14), 1263–1280.

    Article  Google Scholar 

  54. Lin, C.-J., Chou, P.-L., & Chou, C.-F. (2006). Hcdd: Hierarchical cluster-based data dissemination in wireless sensor networks with mobile sink. In Proceedings of the 2006 International Conference on Wireless Communications and Mobile Computing (pp. 1189–1194).

  55. Liu, R.-S., Fan, K.-W., Zheng, Z., & Sinha, P. (2011). Perpetual and fair data collection for environmental energy harvesting sensor networks. IEEE/ACM Transactions on Networking, 19(4), 947–960.

    Article  Google Scholar 

  56. Liu, W., Lu, K., Wang, J., Huang, L., & Wu, D. O. (2012). On the throughput capacity of wireless sensor networks with mobile relays. IEEE Transactions on Vehicular Technology, 61(4), 1801–1809.

    Article  Google Scholar 

  57. Lu, K.-H., Hwang, S.-F., Su, Y.-Y., Chang, H.-N., & Dow, C.-R. (2012). Hierarchical ring-based data gathering for dense wireless sensor networks. Wireless Personal Communications, 64(2), 347–367.

    Article  Google Scholar 

  58. Luo, H., Ye, F., Cheng, J., Lu, S., & Zhang, L. (2005). Ttdd: Two-tier data dissemination in large-scale wireless sensor networks. Wireless Networks, 11(1–2), 161–175.

    Article  Google Scholar 

  59. Ma, M., Yang, Y., & Zhao, M. (2013). Tour planning for mobile data-gathering mechanisms in wireless sensor networks. IEEE Transactions on Vehicular Technology, 62(4), 1472–1483.

    Article  Google Scholar 

  60. Madani, S. A., Hayat, K., & Khan, S. U. (2012). Clustering-based power-controlled routing for mobile wireless sensor networks. International Journal of Communication Systems, 25(4), 529–542.

    Article  Google Scholar 

  61. Mamalis, B., Gavalas, D., Konstantopoulos, C., & Pantziou, G. (2009). Clustering in wireless sensor networks. In Y. Zhang, L. T. Yang, & J. Chen (Eds.), RFID and sensor networks: architectures, protocols, security and integrations (pp. 324–353).

  62. Medhi, N., & Sarma, N. (2012). Mobility aided cooperative mimo transmission in wireless sensor networks. In S. K. Jena & B. Majhi (Eds.), 2nd International Conference on Communication, Computing & Security (ICCCS-2012) (pp. 362–370).

  63. Moon, J., & Leeb, S. B. (2015). Analysis model for magnetic energy harvesters. IEEE Transactions on Power Electronics, 30(8), 4302–4311.

    Article  Google Scholar 

  64. Munir, S. A., Ren, B., Jiao, W., Wang, B., Xie, D. and Ma, J. (2007). Mobile wireless sensor network: architecture and enabling technologies for ubiquitous computing. In 21st International Conference on Advanced Information Networking and Applications Workshops, 2007, AINAW’07 (pp. 113–120).

  65. Narendra, K., & Varun, V. (2014). A comparative analysis of energy-efficient routing protocols in wireless sensor networks. In Emerging Research in Electronics, Computer Science and Technology (pp. 399–405). Springer.

  66. Nazir, B., & Hasbullah, H. (2013). Energy efficient and Qos aware routing protocol for clustered wireless sensor network. Computers & Electrical Engineering, 39(8), 2425–2441.

    Article  Google Scholar 

  67. Ngai, E.-H., Zhou, Y., Lyu, M. R., & Liu, J. (2006). Reliable reporting of delay-sensitive events in wireless sensor-actuator networks. In 2006 IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS) (pp. 101–108).

  68. Ortiz, A. M., Royo, F., Olivares, T., Castillo, J. C., Orozco-Barbosa, L., & Marron, P. J. (2013). Fuzzy-logic based routing for dense wireless sensor networks. Telecommunication Systems, 52(4), 2687–2697.

    Article  Google Scholar 

  69. Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors. Communications of the ACM, 43(5), 51–58.

    Article  Google Scholar 

  70. Qiuling, T., Changyin, S., Huan, W., & Ye, L. (2010). Cross-layer energy efficiency analysis and optimization in WSN. In 2010 International Conference on Networking, Sensing and Control (ICNSC) (pp. 138–142). Accessed 10–12 Apr 2010.

  71. Rahimi, M., Shah, H., Sukhatme, G., Heideman, J., & Estrin, D. (2003). Studying the feasibility of energy harvesting in a mobile sensor network. In Proceedings of ICRA ’03. IEEE International Conference on Robotics and Automation, 2003 (vol. 11, pp. 19–24). Accessed 14–19 Sept 2003.

  72. Ranjani, S. S., Krishnan, S. R., Thangaraj, C., & Devi, K. V. (2013). Achieving energy conservation by cluster based data aggregation in wireless sensor networks. Wireless Personal Communications, 73(3), 731–751.

    Article  Google Scholar 

  73. Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.

    Article  Google Scholar 

  74. Sara, G. S., & Sridharan, D. (2014). Routing in mobile wireless sensor network: A survey. Telecommunication Systems, 57(1), 51–79.

    Article  Google Scholar 

  75. Shah, R. C., Roy, S., Jain, S., & Brunette, W. (2003). Data Mules: Modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks, 1(2–3), 215–233.

    Article  Google Scholar 

  76. Shankar, T., & Shanmugavel, S. (2014). Energy optimization in cluster based wireless sensor networks. Journal of Engineering Science and Technology, 9(2), 246–260.

    Google Scholar 

  77. Shi, L., Zhang, B., Huang, K., & Ma, J. (2011). An efficient data-driven routing protocol for wireless sensor networks with mobile sinks. In 2011 IEEE International Conference on Communications (ICC) (pp. 1–5).

  78. Shin, I., Kim, M., Mutka, M. W., Choo, H., & Lee, T.-J. (2009). Mcbt: Multi-hop cluster based stable backbone trees for data collection and dissemination in WSNs. Sensors, 9(8), 6028–6045.

    Article  Google Scholar 

  79. Shrivastava, P., & Pokle, S. B. (2014). Energy efficient scheduling strategy for data collection in wireless sensor networks, pp. 170–173.

  80. Swami, A., Zhao, Q., Hong, Y.-W., & Tong, L. (2007). Wireless sensor networks: Signal processing and communications. New York: Wiley.

    Book  Google Scholar 

  81. Tseng, Y.-C., Wu, F.-J., & Lai, W.-T. (2013). Opportunistic data collection for disconnected wireless sensor networks by mobile Mules. Ad Hoc Networks, 11(3), 1150–1164.

    Article  Google Scholar 

  82. Tyagi, S., & Kumar, N. (2013). A systematic review on clustering and routing techniques based upon leach protocol for wireless sensor networks. Journal of Network and Computer Applications, 36(2), 623–645.

    Article  Google Scholar 

  83. Tzung-Cheng, C., Tzung-Shi, C., & Ping-Wen, W. (2011). On data collection using mobile robot in wireless sensor networks. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 41(6), 1213–1224.

    Article  Google Scholar 

  84. Van Le, D., Oh, H., & Yoon, S. (2014). Hicodg: A hierarchical data-gathering scheme using cooperative multiple mobile elements. Sensors, 14(12), 24278–24304.

    Article  Google Scholar 

  85. Verma, A., Sawant, H., & Tan, J. (2006). Selection and navigation of mobile sensor nodes using a sensor network. Pervasive and Mobile Computing, 2(1), 65–84.

    Article  Google Scholar 

  86. Wang, C., Li, J., Ye, F. and Yang, Y. (2013a). Multi-vehicle coordination for wireless energy replenishment in sensor networks. In 2013 IEEE 27th International Symposium on Parallel & Distributed Processing (IPDPS) (pp. 1101–1111).

  87. Wang, G., Wang, T., Jia, W., Guo, M., & Li, J. (2009). Adaptive location updates for mobile sinks in wireless sensor networks. The Journal of Supercomputing, 47(2), 127–145.

    Article  Google Scholar 

  88. Wang, J., Li, B., Xia, F., Kim, C.-S., & Kim, J.-U. (2014a). An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks. Sensors, 14(8), 15163–15181.

    Article  Google Scholar 

  89. Wang, J., Yang, X., Li, B., Lee, S., & Jeon, S. (2013b). A mobile sink based uneven clustering algorithm for wireless sensor networks. Journal of Internet Technology, 14(6), 895–902.

    Google Scholar 

  90. Wang, J., Zuo, L., Shen, J., Li, B., & Lee, S. (2014b). Multiple mobile sink-based routing algorithm for data dissemination in wireless sensor networks. Concurrency and Computation: Practice and Experience.

  91. Wang, S., Vasilakos, A., Jiang, H., Ma, X., Liu, W., Peng, K., Liu, B., & Dong, Y. (2011). Energy efficient broadcasting using network coding aware protocol in wireless ad hoc network. In 2011 IEEE International Conference on Communications (ICC) (pp. 1–5).

  92. Wang, Y.-C. (2014). Mobile sensor networks: System hardware and dispatch software. ACM Computing Surveys, 47(1), 12.

    Article  Google Scholar 

  93. Wen, Y. F., Anderson, T. A., & Powers, D. M. (2014). On energy-efficient aggregation routing and scheduling in IEEE 802.15. 4-based wireless sensor networks. Wireless Communications and Mobile Computing, 14(2), 232–253.

    Article  Google Scholar 

  94. Wichmann, A., Chester, J., & Korkmaz, T. (2012). Smooth path construction for data mule tours in wireless sensor networks. In 2012 IEEE Global Communications Conference (GLOBECOM) (pp. 86–92).

  95. Wimalajeewa, T., & Jayaweera, S. K. (2010). Impact of mobile node density on detection performance measures in a hybrid sensor network. IEEE Transactions on Wireless Communications, 9(5), 1760–1769.

  96. Xu, L., Delaney, D. T., O’hare, G. M., & Collier, R. (2013). The impact of transmission power control in wireless sensor networks. In 2013 12th IEEE International Symposium on Network Computing and Applications (NCA) (pp. 255–258).

  97. Yin, F., Li, Z., & Wang, H. (2013). Energy-efficient data collection in multiple mobile gateways WSN-MCN convergence system. pp. 271–276.

  98. You-Chiun, W., Wen-Chih, P., & Yu-Chee, T. (2010). Energy-balanced dispatch of mobile sensors in a hybrid wireless sensor network. IEEE Transactions on Parallel and Distributed Systems, 21(12), 1836–1850.

    Article  Google Scholar 

  99. Yuan, F., Zhan, Y., & Wang, Y. (2014). Data density correlation degree clustering method for data aggregation in WSN. IEEE Sensors Journal, 14(4), 1089–1098.

    Article  Google Scholar 

  100. Zhang, J., & Varadharajan, V. (2010). Wireless sensor network key management survey and taxonomy. Journal of Network and Computer Applications, 33(2), 63–75.

    Article  Google Scholar 

  101. Zhao, M., Li, J., & Yang, Y. (2014). A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2689–2705.

    Article  Google Scholar 

  102. Zhao, M., Ma, M., & Yang, Y. (2011). Efficient data gathering with mobile collectors and space-division multiple access technique in wireless sensor networks. IEEE Transactions on Computers, 60(3), 400–417.

    Article  Google Scholar 

  103. Zhong, M., & Cassandras, C. G. (2011). Distributed coverage control and data collection with mobile sensor networks. IEEE Transactions on Automatic Control, 56(10), 2445–2455.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Islamic Development Bank (IDB) Scholarship Division, for supporting this work. The research is also supported by the Ministry of Education Malaysia (MOE) and conducted in collaboration with Research Management Center (RMC) at Universiti Teknologi Malaysia (UTM) under VOT NUMBER: Q.J130000.2528.06H00. They also thank the University of Malaya for the financial assistance (UMRG Grant RG325-15AFR). Lastly, the authors extend their appreciation to the Deanship of Scientific Research at King Saud University for supporting this work through the research group project No RGP-VPP-318.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaddafi Abdul-Salaam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul-Salaam, G., Abdullah, A.H., Anisi, M.H. et al. A comparative analysis of energy conservation approaches in hybrid wireless sensor networks data collection protocols. Telecommun Syst 61, 159–179 (2016). https://doi.org/10.1007/s11235-015-0092-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0092-8

Keywords

Navigation