Skip to main content
Log in

Distributed joint subcarrier and discrete power allocation for cognitive radio ad hoc networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

One of the key problems in orthogonal frequency division multiple-access (OFDMA) cognitive radio (CR) ad hoc networks is to efficiently and fairly allocate subcarriers and powers in a distributed manner. However, two formidable shortcomings exist in most previous works. One is that the fairness issue has not been sufficiently taken into account so that different types of fairness among secondary users (SUs) may not be guaranteed. The other is that the transmission power of each SU is assumed to take any value in a continuous domain, whereas for practical CR ad hoc networks, the power level can only be quantized into discrete values. To overcome the above shortcomings, an optimization framework is first presented, where different types of fairness for resource allocation are considered and the transmission power of each SU is allowed to take only a finite number of discrete values. In particular, the fairness of resource allocation is guaranteed by associating each SU with a utility function for each subcarrier, where the utility function is allowed to be non-concave or non-differentiable so that our framework can deal with resource allocation for real-time applications. Furthermore, to solve the proposed non-convex integer optimization problem, a distributed algorithm with low complexity is proposed, according to which only limited cooperation among network entities is required. At last, simulation results verify that our algorithm has very good convergence and fairness performance, and then it may be applied to practical OFDMA-based CR ad hoc networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Federal Communications Commission. (2003). In Cognitive radio technologies proceeding. Report ET Docket, No. 03-108.

  2. Ngo, D. T., & Le-Ngoc, T. (2011). Distributed resource allocation for cognitive radio networks with spectrum-sharing constraints. IEEE Transactions on Vehicular Technology, 60(7), 3436–3449.

    Article  Google Scholar 

  3. Xing, Y., Mathur, C. N., Haleem, M., et al. (2007). Dynamic spectrum access with QoS and interference temperature constraints. IEEE Transactions on Mobile Computing, 6(4), 423–433.

    Article  Google Scholar 

  4. Salem, M., Adinoyi, A., Rahman, M., et al. (2010). An overview of radio resource management in relay-enhanced OFMDA-based networks. IEEE Communications Surveys and Tutorials, 12(3), 422–438.

    Article  Google Scholar 

  5. Bansal, G., Hossain, M. J., Bhargava, V. K., et al. (2013). Subcarrier and power allocation for OFDMA-based cognitive radio systems with joint overlay and underlay spectrum access mechanism. IEEE Transactions on Vehicular Technology, 62(3), 1111–1122.

    Article  Google Scholar 

  6. Adian, M. G., & Aghaeinia, H. (2014). Resource allocation in MIMO-OFDM-based cooperative cognitive radio networks. IEEE Transactions on Communications, 62(7), 2224–2235.

    Article  Google Scholar 

  7. Ngo, D. T., Tellambura, C., & Nguyen, H. H. (2009). Efficient resource allocation for OFDMA multicast systems with spectrum-sharing control. IEEE Transactions on Vehicular Technology, 58(9), 4878–4889.

    Article  Google Scholar 

  8. Mokari, N., Azmi, P., & Saeedi, H. (2014). Quantized ergodic radio resource allocation in cognitive networks with guaranteed quality of service for primary network. IEEE Transactions on Vehicular Technology, 63(8), 3774–3782.

    Article  Google Scholar 

  9. Mokari, N., Parsaeefard, S., Saeedi, H., et al. (2015). Secure robust ergodic uplink resource allocation in relay-assisted cognitive radio networks. IEEE Transactions on Signal Processing, 63(2), 291–304.

    Article  Google Scholar 

  10. Kim, S.-J., Soltani, N. Y., & Giannakis, G. B. (2013). Resource allocation for OFDMA cognitive radios under channel uncertainty. IIEEE Transactions on Wireless Communications, 12(7), 3578–3587.

    Article  Google Scholar 

  11. Cheng, P., Zhang, Z., Chen, H. H., et al. (2008). Optimal distributed joint frequency, rate and power allocation in cognitive OFDMA systems. IET Communications, 2(6), 815–826.

    Article  Google Scholar 

  12. Bazerque, J.-A., & Giannakis, G. B. (2007). Distributed scheduling and resource allocation for cognitive OFDMA radios. Mobile Networks and Applications, 13(5), 452–462.

    Article  Google Scholar 

  13. Guo, S. T., Dang, C. Y., & Liao, X. F. (2011). Distributed resource allocation with fairness for cognitive radios in wireless mobile ad hoc networks. Wireless Networks, 17, 1493–1512.

    Article  Google Scholar 

  14. Gao, S., Qian, L. J., & Vaman, D. R. (2009). Distributed energy efficient spectrum access in cognitive radio wireless ad hoc networks. IEEE Transactions on Wireless Communications, 8(10), 5202–5213.

    Article  Google Scholar 

  15. Xu, C., Sheng, M., Yang, C. G., et al. (2014). Pricing-based multiresource allocation in OFDMA cognitive radio networks: An energy efficiency perspective. IEEE Transactions on Vehicular Technology, 63(5), 2336–2348.

    Article  Google Scholar 

  16. Qu, Q., Milstein, L. B., & Vaman, D. R. (2008). Cognitive radio based multi-user resource allocation in mobile ad hoc networks using multi-carrier CDMA modulation. IEEE Journal on Selected Areas in Communications, 26(1), 70–82.

    Article  Google Scholar 

  17. Saki, H., & Shikh-Bahaei, M. (2015). Cross-layer resource allocation for video streaming over OFDMA cognitive radio networks. IEEE Transactions on Multimedia, 17(3), 333–345.

    Article  Google Scholar 

  18. Yang, L. B., Zhao, H. L., & Jia, M. (2014). Cross-layer scheduling design for multimedia applications over cognitive ad hoc networks. China Communications, 11(7), 99–109.

    Article  Google Scholar 

  19. Wang, W., Shin, K. G., & Wang, W. B. (2012). Distributed resource allocation based on queue balancing in multihop cognitive radio networks. IEEE/ACM Transactions on Networking, 20(3), 837–850.

    Article  Google Scholar 

  20. Pan, M., Zhang, C., Li, P., et al. (2012). Spectrum harvesting and sharing in multi-hop CRNs under uncertain spectrum supply. IEEE Journal on Selected Areas in Communications, 30(2), 369–378.

    Article  Google Scholar 

  21. Bao, V. N. Q., Thanh, T. T., Nguyen, T. D., et al. (2012). Spectrum sharing-based multi-hop decode-and-forward relay networks under interference constraints: Performance analysis and relay position optimization. The Journal of Communications and Networks, 15(3), 266–275.

    Article  Google Scholar 

  22. Cammarano, A., Presti, F. L., & Maselli, G., et. al. (2015). Throughput-optimal cross-layer design for cognitive radio ad hoc networks. IEEE Transactions on Parallel and Distributed Systems (to be published).

  23. Yu, W., & Lui, R. (2006). Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Transactions on Communications, 54(7), 1310–1322.

    Article  Google Scholar 

  24. Sengupta, S., Chatterjee, M., & Kwiat, K. A. (2010). A game theoretic framework for power control in wireless sensor networks. IEEE Transactions on Computers, 59(2), 231–242.

    Article  Google Scholar 

  25. Liu, C.-H., Rong, B. Y., & Cui, S. G. (2015). Optimal discrete power control in poisson-clustered ad hoc networks. IEEE Transactions on Wireless Communications, 14(1), 138–151.

    Article  Google Scholar 

  26. Lee, J.-W., Chiang, M., & Calderbank, A. R. (2006). Jointly optimal congestion and contention control based on network utility maximization. IEEE Communications Letters, 10(3), 216–218.

    Article  Google Scholar 

  27. Lee, J.-W., Chiang, M., & Calderbank, A. R. (2006). Optimal MAC design based on utility maximization reverse and forward engineering. In Proceedings of IEEE International Conference on Computer Communications (INFOCOM’06), pp. 1–13.

  28. Hande, P., Zhang, S. Y., & Chiang, M. (2007). Distributed rate allocation for inelastic flows. IEEE/ACM Transactions on Networking, 15(6), 1240–1253.

    Article  Google Scholar 

  29. Shenker, S. (1995). Fundamental design issues for the future internet. IEEE Journal on Selected Areas in Communications, 13(7), 1176–1188.

    Article  Google Scholar 

  30. Bertsekas, D. P. (1996). Constrained optimization and lgrange multiplier method. Belmont: Athena Scientific.

    Google Scholar 

  31. Bertsekas, D. P., Lauer, G. S., Sandell, N. R., et al. (1983). Optimal short-term scheduling of large-scale power systems. IEEE Transactions on Automatic Control, 28(1), 1–11.

    Article  Google Scholar 

  32. Kim, K., Han, Y., & Kim, S.-L. (2005). Joint subcarrier and power allocation in uplink OFDMA systems. IEEE Communications Letters, 9(6), 526–528.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (XDJK2013C094, XDJK2013A018, 2362014XK12), the National Natural Science Foundation of China (Nos. 61170248, 61373179, 61373178, 61402381, 61503310) and Science and Technology Leading Talent Promotion Project of Chongqing (cstc2013kjrc-ljrccj40001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songtao Guo.

Appendix: A Proof of same dual function of problems (4) and (5)

Appendix: A Proof of same dual function of problems (4) and (5)

In this part, we prove that problem (5) has the same dual function and dual problem with problem (4). First, by introducing the Lagrange multipliers \(\mu _{m},\) \(\tau _{n},\) the Lagrangian function of problem (5) can be given as follows:

$$\begin{aligned}&L({\mu },\tau ,\mathbf {prob})\nonumber \\&\quad =\sum \nolimits _{m=1}^{M}\sum \nolimits _{k=1}^{K} \sum \nolimits _{a_{m}^{k}} \sum \nolimits _{i=1}^{I_{a_{m}^{k}}}prob_{m}^{k}(i,a_{m}^{k})U_{m}^{k}(r_{m}^{k}(i,a_{m}^{k}))\nonumber \\&\qquad +\sum \nolimits _{m=1}^{M}\mu _{m}\Bigg \{P_{m}^{\max }-\sum \nolimits _{k=1}^{K}\sum \nolimits _{a_{m}^{k}} \sum \nolimits _{i=1}^{I_{a_{m}^{k}}}\nonumber \\&\qquad \times \,prob_{m}^{k}(i,a_{m}^{k})p_{m}^{k}(i,a_{m}^{k})\Bigg \} \nonumber \\&\qquad +\sum \nolimits _{n=1}^{N}\tau _{n}\Bigg \{ I_{n}^{th}-\sum \nolimits _{m=1}^{M}\sum \nolimits _{k=1}^{K}\sum \nolimits _{a_{m}^{k}} \sum \nolimits _{i=1}^{I_{a_{m}^{k}}}\nonumber \\&\qquad \times \,prob_{m}^{k}(i,a_{m}^{k})a_{m}^{k}b_{n}^{k}g_{mn}^{k}p_{m}^{k}(i,a_{m}^{k})\Bigg \}\nonumber \\&\quad =\sum \nolimits _{m=1}^{M}\sum \nolimits _{k=1}^{K}\sum \nolimits _{a_{m}^{k}} \sum \nolimits _{i=1}^{I_{a_{m}^{k}}}prob_{m}^{k}(i,a_{m}^{k})\nonumber \\&\qquad \times \,\Bigg \{ U_{m}^{k}(r_{m}^{k}(i,a_{m}^{k}))-\mu _{m}p_{m}^{k}(i,a_{m}^{k}) \nonumber \\&\qquad -\sum \nolimits _{n=1}^{N}\tau _{n}a_{m}^{k}b_{n}^{k}g_{mn}^{k}p_{m}^{k}(i,a_{m}^{k})\Bigg \}\nonumber \\&\qquad +\sum \nolimits _{m=1}^{M}\mu _{m}P_{m}^{\max }+\sum \nolimits _{n=1}^{N}\tau _{n}I_{n}^{th}. \end{aligned}$$
(23)

Then, the dual function can be given as

$$\begin{aligned} d({\mu },{\tau })= & {} {\max }_{\mathbf {prob}}L({\mu }, \tau ,\mathbf {prob}) \nonumber \\\le & {} \sum \nolimits _{m=1}^{M}\sum \nolimits _{k=1}^{K}\sum \nolimits _{a_{m}^{k}} \sum \nolimits _{i=1}^{I_{a_{m}^{k}}}prob_{m}^{k}\big (i,a_{m}^{k}\big )\nonumber \\&{\max }_{\begin{array}{c} a_{m}^{k},i=1,\ldots ,I_{a_{m}^{k}}, \\ p_{m}^{k}\big (i,a_{m}^{k}\big )\in X_{m}^{k}\big (a_{m}^{k}\big ) \end{array}}\nonumber \\&\times \Bigg \{ U_{m}^{k}\big (r_{m}^{k}\big (i,a_{m}^{k}\big )\big ) -\mu _{m}p_{m}^{k}\big (i,a_{m}^{k}\big )\nonumber \\&\quad -\sum \nolimits _{n=1}^{N}\tau _{n}a_{m}^{k}b_{n}^{k}g_{mn}^{k}p_{m}^{k}\big (i,a_{m}^{k}\big )\Bigg \}\nonumber \\&\quad +\sum \nolimits _{m=1}^{M}\mu _{m}P_{m}^{\max }+\sum \nolimits _{n=1}^{N}\tau _{n}I_{n}^{th}. \end{aligned}$$
(24)

Due to the equality \(\sum _{a_{m}^{k}} \sum _{i=1}^{I_{a_{m}^{k}}}prob_{m}^{k}(i,a_{m}^{k})=1,\forall m,\forall k\), it follows that

$$\begin{aligned} d({\mu },{\tau })= & {} \sum \nolimits _{m=1}^{M}\sum \nolimits _{k=1}^{K}{\max } _{\begin{array}{c} a_{m}^{k},i=1,\ldots ,I_{a_{m}^{k}}, \\ p_{m}^{k}(i,a_{m}^{k}) \in X_{m}^{k}(a_{m}^{k}) \end{array}}\\&\times \Bigg \{U_{m}^{k}(r_{m}^{k}(i,a_{m}^{k}))-\mu _{m}p_{m}^{k}(i,a_{m}^{k})\\&-\sum \nolimits _{n}\tau _{n}a_{m}^{k}b_{n}^{k}g_{mn}^{k}p_{m}^{k}(i,a_{m}^{k})\Bigg \}\\&+\sum \nolimits _{m}\mu _{m}P_{m}^{\max }+\sum \nolimits _{n}\tau _{n}I_{n}^{th}. \end{aligned}$$

Similarly, it can be known that \(d({\mu },{\tau })\) is also the dual function of (4), and then problem (4) has the same dual function and dual problem with problem (5). This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Guo, S., Shi, Y. et al. Distributed joint subcarrier and discrete power allocation for cognitive radio ad hoc networks. Telecommun Syst 63, 111–125 (2016). https://doi.org/10.1007/s11235-015-0103-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0103-9

Keywords

Navigation