Skip to main content
Log in

A methodology for information and capacity analysis of broadband wireless access systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Using a part of a general methodology for population analysis, developed recently in Lazov and Lazov [1], and relying on the fundamental concepts of system information i and system entropy \(S=E\left( i \right) \), this paper promotes a methodology for information and capacity analysis of broadband wireless access (BWA) systems. A BWA system consists of a base station (BS) and a group of M users in its coverage area, with N simultaneously active users, \(0\le N\le M\), working in point-to-multipoint mode. As in [1], we model this system as family of birth-death processes (BDPs), with size \(M+1\), in equilibrium, indexed by the system utilization parameter \(\rho \), ratio of its primary birth and death rates, \(\rho =\lambda /\mu \). We evaluate the BWA system information and entropy, and full system capacity, and then, assuming the same Gaussian distribution for the arrival traffic at BS from any user, system capacity (as a function of the system information) and its mean value, and mean normalized square deviation of the system capacity from its linear part. We compare the information of empty \(\left( {N=0} \right) \) and full \(\left( {N=M} \right) \) system with system entropy, and further, system mean capacity with full system capacity, as functions of parameter \(\rho \). The developed methodology is illustrated on families of BDPs with truncated geometrical, truncated Poisson and Binomial distributions as their equilibrium ones, which model the information linear, Erlang loss and Binomial BWA systems, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lazov, P., & Lazov, I. (2014). A general methodology for population analysis. Physica A, 415, 557–594.

  2. Nuaymi, L. (2007). WiMAX: Technology for Broadband Wireless Access. Chichester: Wiley.

    Book  Google Scholar 

  3. Ghosh, A., Zhang, J., Andrews, J. G., & Muhamed, R. (2010). Fundamentals of LTE. New Jersey: Prentice Hall.

    Google Scholar 

  4. Bertsekas, D., & Gallagher, R. (1987). Data Networks. New Jersey: Prentice Hall.

    Google Scholar 

  5. Molloy, M. (1989). Fundamentals of Performance Modeling. New York: Macmillan.

    Google Scholar 

  6. Hayes, J. F., & Ganesh Babu, T. V. J. (2004). Modeling and Analysis of Telecommunications Networks. Hoboken: Wiley.

    Book  Google Scholar 

  7. Özgür, A., Lévêque, O., & Tse, D. (2011). Operating regimes of large wireless networks. Foundations and \({Trends}^{{\textregistered }}\) in Networking, 5 (1), pp. 1–107.

  8. Kompella, S., & Ephremides, A. (2014). Stable throughput regions in wireless networks. Foundations and \({Trends}^{{\textregistered }} \) in Networking, 7 (4), pp. 235–338.

  9. Ferdinand, A. E. (1970). A statistical mechanics approach to systems analysis. IBM Journal of Research and Development, 14(5), 539–547.

    Article  Google Scholar 

  10. Shore, J. E. (1982). Information theoretic approximations for \(M/G/1\) and \(G/G/1\) queueing systems. Acta Informatica, 17, 43–61.

    Article  Google Scholar 

  11. Guiasu, S. (1986). Maximum entropy condition in queueing theory. Journal of the Operational Research Society, 37, 293–301.

    Article  Google Scholar 

  12. Karmeshu, (2003). Entropy Measures, Maximum Entropy Principle and Emerging Applications. New York: Springer.

    Book  Google Scholar 

  13. Touchette, H., & Lloyd, S. (2004). Information-theoretic approach to the study of control systems. Physica A, 331(1–2), 140–172.

  14. Lévêque, O., & Telatar, E. (2005). Information theoretic upper bounds on the capacity of large, extended ad-hoc wireless networks. IEEE Transactions on Information Theory, IT–51(3), 858–865.

    Article  Google Scholar 

  15. Xue, F., & Kumar, P. R. (2006). Scaling laws for ad hoc wireless networks: An information theoretic approach. Foundations and \(Trends^{{\textregistered }}\) in Networking, 1 (2), pp. 145–270.

  16. Franceschetti, M., Migliore, M. D., & Minero, P. (2009). The capacity of wireless networks: information-theoretic and physical limits. IEEE Transactions on Information Theory, 55(8), 3413–3424.

    Article  Google Scholar 

  17. Vázquez-Rodas, A., de la Cruz Llopis, L. J., Igartua, M. A., & Gargallo, E. S. (2014). Dynamic buffer sizing for wireless devices via maximum entropy. Computer Communications, 44, 44–58.

  18. Gell-Mann, M., & Tsallis, C. (2004). Nonextensive Entropy Interdisciplinary Applications. New York: Oxford University Press.

    Google Scholar 

  19. Karmeshu, & Sharma, S. (2006). q-Exponential product-form solution of packet distribution in queueing networks: maximisation of Tsallis entropy. IEEE Communications Letters, 10(8), 585–587.

    Article  Google Scholar 

  20. Kouvatsos, D.D., & Assi, S.A. (2011) On the analysis of queues with heavy tails: A non-extensive maximum entropy formalism and a generalisation of the Zipf-Mandelbrot distribution, In Performance Evaluation of Computer and Communication Systems—Milestones and Future Challenges, Lecture notes in computer science (Vol. 6821, pp. 99–111). Springer.

  21. Das, S.K., & Rose, C. (2005). Coping with uncertainty in mobile wireless networks, In Ganesh, R., Kota, S.L., Pahlavan, K., Agusti, R. (Ed.) Emerging Location Aware Broadband Wireless Ad Hoc Networks (pp. 189–204). Springer, Boston.

  22. Niyato, D., & Hossain, E. (2007). Service Differentiation in Broadband Wireless Access Networks with Scheduling and Connection Admission Control: A Unified Analysis. IEEE Transactions on Wireless Communications, 6(1), 293–301.

    Article  Google Scholar 

  23. Vu, H. L., Chan, S., & Andrew, L. L. H. (2010). Performance Analysis of Best-Effort Service in Saturated IEEE 802.16 Networks. IEEE Transactions on Vehicular Technology, 59(1), 460–472.

    Article  Google Scholar 

  24. So-In, C., & Jain, R. (2010). Capacity evaluation for IEEE 802.16e mobile WiMAX. Journal on Computer Systems, Networks and Communications, 1, 1–6.

    Article  Google Scholar 

  25. Saffer, Z., Andreev, S., & Koucheryavy, Y. (2011). Performance evaluation of uplink delay-tolerant packet service in IEEE 802.16-based networks. EURASIP Journal of Wireless Communications and Networking, 2011, 549492.

  26. Wang, H., He, B., & Agrawal, D.P. (2006). Admission control and bandwidth allocation above packet level for IEEE 802.16 wireless MAN, Proceedings of the \(12^{th}\) International Conference on Parallel and Distributed Systems (ICPADS’06).

  27. Rubin, I. (1979). Access-control disciplines for multi-access communication channels: reservation and tdma schemes. IEEE Transactions on Information Theory, 25(5), 516–536.

  28. Kauffman, J. S. (1981). Blocking in a shared resource environment. IEEE Transactions on Communications, COM–29(10), 1474–1481.

    Article  Google Scholar 

  29. Hui, J. Y. (1988). Resource allocation for broadband networks. IEEE Journal of Selected Areas in Communications, 9, 1598–1609.

    Article  Google Scholar 

  30. Gibbs, J. W. (1878). On the equilibrium of heterogeneous substances: abstract by the author. American Journal of Science, XVI, 441–458. 3 ser.

    Article  Google Scholar 

  31. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423–623-656.

  32. Kleinrock, L. (1975). Queueing Systems. Vol.1: Theory. New York: Wiley.

    Google Scholar 

  33. Gross, D., & Harris, C. (1998). Fundamentals of Queueing Theory (3rd ed.). New York: Wiley.

    Google Scholar 

  34. Sole, R. V., & Valverde, S. (2004). Information theory of complex networks: on evolution and architectural constraints. Lecture notes in physics (Vol. 650, pp. 189–207). Berlin: Springer.

  35. Stuart, A., & Ord, J. K. (2010). Kendall’s Advanced Theory of Statistics, Volume 1: Distribution Theory (6th ed.). New York: Wiley. (first published 1958).

    Google Scholar 

  36. Csiszar, I. (1967). Information-type measures of difference of probability distributions and indirect observations. Studia Scientiarum Mathematicarum Hungarica, 2, 299–318.

    Google Scholar 

  37. Harvda, J., & Charvat, F. (1967). Quantification method of classification processes. Concept of structural \(\alpha \)-entropy. Kibernetica, 3, 30–45.

    Google Scholar 

  38. Sharma, B. D., & Taneja, I. J. (1975). Entropy of type \((\alpha,\,\beta )\) and other generalized measures in information theory. Metrika, 22, 35–45.

    Article  Google Scholar 

  39. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52(1–2), 479–487.

    Article  Google Scholar 

  40. Kaniadakis, G. (2001). Non-linear kinetics underlying generalized statistics. Physica A, 296, 405–425.

    Article  Google Scholar 

  41. Lazov, I. (2015). Entropy analysis of broadband wireless access systems. IEEE Systems Journal, PP(99), 1–8. doi:10.1109/JSYST.2015.2456941.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Lazov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazov, I. A methodology for information and capacity analysis of broadband wireless access systems. Telecommun Syst 63, 127–139 (2016). https://doi.org/10.1007/s11235-015-0104-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0104-8

Keywords

Navigation