Skip to main content

Advertisement

Log in

A context-aware search system for Internet of Things based on hierarchical context model

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In recent years, numerous sensing devices and wireless networks are immersed into our living environments, creating the Internet of Things (IoT) integrating the cyber and physical objects. Searching for objects in IoT is a challenging problem because the context relationships among IoT objects are various and complex. The traditional web search approaches cannot work well in the IoT search domain because they miss the critical characteristics of the context relationships. In addition, a user’s dynamic and changing context affects the user’s information needs, and an IoT search system should exploit context relationship in IoT for retrieving relevant information suitable for the user’s current context. In this paper, we present a context-aware search system for IoT, which aims to search objects and related information with more suitable results. We construct a hierarchical context model based on ontology to represent the IoT objects and their contextual relationships. Then, searches are executed with consideration of users’ context that is recognized by a context-aware hidden Markov model. Experimental results confirmed that users could obtain more suitable and reasonable search results than with a typical web or map search system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zhang, D., Yang, L. T., & Huang, H. (2011). Searching in Internet of Things: Vision and challenges. In Proceedings of the international symposium on parallel and distributed processing and applications (pp. 201–206).

  2. Kientz, J. A., Patel, S. N., Tyebkhan, A. Z., Gane, B., Wiley, J., & Abowd, G. D. (2006). Where’s my stuff? Design and evaluation of a mobile system for locating lost items for the visually impaired. In Proceedings of the 8th international conference on computers and accessibility (pp. 103–110).

  3. Kruk, S. R. Grzonkowski, S., Gzella, A., & Cygan, M. (2006). DigiMe-Ubiquitous Search and Browsing for Digital Libraries. In Proceedings of the 7th international conference on mobile data management (pp. 84–91).

  4. Frank, C., Bolliger, P., Mattern, F., & Kellerer, W. (2007). Objects calling home: Locating objects using mobile phones. In Proceedings of pervasive (pp. 351–368).

  5. Frank, C., Bolliger, P., Mattern, F., & Kellerer, W. (2008). The sensor internet at work: Locating everyday items using mobile phones. Pervasive and Mobile Computing, 4(3), 421–447.

    Article  Google Scholar 

  6. Yap, K. K., Srinivasan, V., Motani, M. (2005). MAX: Human-centric search of the physical world. In Proceedings of the 3rd international conference on embedded networked sensor systems (pp. 166–179).

  7. Komatsuzaki, M., Tsukada, K., Siio, I., Verronen, P., Luimula, M., & Pieska, S. (2011). IteMinder: Finding items in a room using passive RFID tags and an autonomous robot (poster). In Proceedings of the UbiComp’11 (pp. 599–600).

  8. Perera, C., Zaslavsky, A., Christen, P., Compton, M., & Georgakopoulos, D. (2013). Context-aware sensor search, selection and ranking model for Internet of Things middleware. In IEEE 14th International Conference on Mobile Data Management.

  9. Bergamo, P., & Mazzini, G. (2002). Localization in sensor networks with fading and mobility. In IEEE PIMRC (pp. 750–754).

  10. Zhang, D., Zhou, J., Guo, M., & Cao, J. (2011). TASA: Tag-free activity sensing using RFID tag arrays. IEEE Transactions on Parallel and Distributed Systems (TPDS), 22, 558–570.

    Article  Google Scholar 

  11. Madden, S. R., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2005). TinyDB: An acquisitional query processing system for sensor networks. ACM Transactions on Database Systems, 30(1), 122–173.

    Article  Google Scholar 

  12. Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). Towards a better understanding of context and context-awareness. Handheld and ubiquitous computing (pp. 304–307). Berlin: Springer.

    Chapter  Google Scholar 

  13. Wang, H., Tan, C. C., & Li, Q. (2010). Snoogle: A search engine for pervasive environments. IEEE Transactions on Parallel and Distributed Systems, 21(8), 1188–1202.

    Article  Google Scholar 

  14. Tan, C. C., Sheng, B., Wang, H., & Li, Q. (2010). Microsearch: A search engine for embedded devices used in pervasive computing. ACM Transactions on Embedded Computing Systems, 9(4), 43.

  15. Ejigu, D., Scuturici, M., & Brunie, L. (2007). An ontology-based approach to context modeling and reasoning in pervasive computing. In PerCom’07 (pp. 14–19).

  16. Hung, P. H., Gu, T., Xue, W., Palmes, P. P., Zhu, J., Ng, W. L., et al. (2009). Context-aware middleware for pervasive elderly homecare. IEEE Journal on Selected Areas in Communications, 27(4), 510–524.

    Article  Google Scholar 

  17. Heil, A., Knoll, M., & Weis, T. (2007). The Internet of Things—Context-based Device Federations. In Proceedings of the 40th annual Hawaii international conference on system sciences (pp. 58–66).

  18. Ostermaier, B., Roalter, K., Andmer, L. O., Mattern, F., Fahrmair, M., & Kellerer, W. (2010). A real-time search engine for the web of things. In Proceedings of the 2rd international conference on the Internet of Things (pp. 1–8).

  19. Shen, H., Liu, J., Chen, K., Liu, J., & Moyer, S. (2013). SCPS: A social-aware distributed cyber-physical human-centric search engine. IEEE Transactions on Computers, 64(2), 518–532.

  20. Hervás, R., Bravo, J., & Fontecha, J. (2010). A context model based on ontological languages, a proposal for information visualization. Journal of Universal Computer Science, 16(12), 1539–1555.

  21. Holford, M. E., Khurana, E., Cheung, K.-H., & Gerstein, M. (2010). Using semantic web rules to reason on an ontology of pseudogenes. Bioinformatics, 26(12), 71–78.

    Article  Google Scholar 

  22. Maekawa, T., Yanagisawa, Y., Sakurai, Y., Kishino, Y., Kamei, K., & Okadome, T. (2012). Context-aware web search in ubiquitous sensor environments. ACM Transactions on Internet Technology, 11(3), 1–23.

    Article  Google Scholar 

  23. Qian, H., Mao, Y., Xiang, W., & Wang, Z. (2010). Recognition of human activities using SVM multi-class classifier. Pattern Recognition Letters, 31(2), 100–111.

    Article  Google Scholar 

  24. Khan, A. M., Lee, Y. K., Kim, T. S. (2008). Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets. In Proceedings of 30th annual IEEE international conference on engineering in medicine and biology society (pp. 5172–5175).

  25. Zhang, D., Zhang, D., Yang, L. T., Gauthier, V., & Xiong, H. (2013). NextCell: Prediction location using cell phone traces. IEEE Transactions on Computers,. doi:10.1109/TC.2013.223.

    Google Scholar 

  26. Gu, T., Chen, S., Tao, X., & Lu, J. (2010). An unsupervised approach to activity recognition and segmentation based on object-use fingerprints. Data and Knowledge Engineering, 69(6), 533–544.

    Article  Google Scholar 

  27. Guan, D., Yuan, W., Lee, Y., Gavrilov, A., & Lee, S. (2007). Activity recognition based on semi-supervised learning. In Proceedings of 13th IEEE international conference on embedded and real-time computing systems and applications (pp. 469–475).

  28. Stikic, M., Larlus, D., & Schiele, B (2009). Multi-graph based semi-supervised learning for activity recognition. In Proceedings of the 13th IEEE international symposium on wearable computers (pp. 85–92).

  29. Zhang, T., Liu, S., Xu, C., & Lu, H. (2011). Boosted multi-class semi-supervised learning for human action recognition. Pattern Recognition, 44(10–11), 2334–2342.

    Article  Google Scholar 

  30. Baum, L. E., Petrie, T., Soules, G., et al. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41, 164–171.

    Article  Google Scholar 

  31. Zhang, D., Yang, L. T., Chen, M., Zhao, S., Guo, M., & Zhang, Y. (2014). A real-time locating system using active RFID for Internet of Things. IEEE Systems Journal,. doi:10.1109/JSYST.2014.2346625.

    Google Scholar 

  32. Zhang, D., Guo, M., Zhou, J., Kang, D., & Cao, J. (2010). Context reasoning using extended evidence theory in pervasive computing environments. Future Generation Computer Systems (FGCS), 26, 207–216.

    Article  Google Scholar 

  33. Husne, A. R., & Tae-Seong, K. (2010). Activity recognition from single tri-axial accelerometer using wavelet packet decomposition and ANN. In Proceedings of the 2010 international conference on artificial intelligence (pp. 386–390).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhou, J. & Guo, M. A context-aware search system for Internet of Things based on hierarchical context model. Telecommun Syst 62, 77–91 (2016). https://doi.org/10.1007/s11235-015-9984-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-9984-x

Keywords

Navigation