Skip to main content
Log in

A bandwidth-efficient and fair CSMA/TDMA based multichannel MAC scheme for V2V communications

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Designing QoS-aware medium access control (MAC) scheme is a challenging issue in vehicular ad hoc networks. Proportional fairness and bandwidth utilization are among the significant requirements that should be taken into account by a MAC scheme. In this paper, a bandwidth-efficient and fair multichannel MAC protocol is proposed to address these two requirements, specifically in vehicle-to-vehicle communications. The proposed scheme is based on clustering of vehicles and exploits time division multiple access (TDMA) method alongside the carrier sense multiple access with collision avoidance mechanism to allocate DSRC-based resources in a different manner from IEEE 802.11p/IEEE 1609.4 protocols. It divides each channel into aligned dynamic-sized time frames. In each time frame, in a fully TDMA-based period, transmission opportunities are assigned to vehicles letting them have dedicated transmissions on the service and control channels. The maximum number of transmission opportunities per each frame is determined by the cluster head (CH) based on a defined optimization problem which aims at maximizing both proportional fairness and bandwidth utilization. Furthermore, the bandwidth utilization is assumed to be enhanced more through reallocation of unused transmission opportunities in each time frame, using a proposed reallocation algorithm. The proposed MAC protocol is treated as a lightweight scheme such that various types of unicast, multicast and broadcast communications are possible within the cluster without involving the CH. Evaluation results show that the proposed scheme has more than 90 % achievement in terms of proportional fairness and bandwidth utilization simultaneously, and in this case, has a considerable superiority over TC-MAC. In addition, using the proposed scheme, the satisfaction level of vehicles is preserved appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Eichler, S. (2007). Performance evaluation of the IEEE 802.11p WAVE communication standard. In Vehicular technology conference (pp. 2199–2203).

  2. Hassan, M. I., Vu, H. L., & Sakurai, T. (2011). Performance analysis of the IEEE 802.11 MAC protocol for DSRC safety applications. Vehicular Technology, 60(8), 3882–3896. doi:10.1109/TVT.2011.2162755.

    Article  Google Scholar 

  3. Leng, S., Fu, H., Wang, Q., & Zhang, Y. (2011). Medium access control in vehicular ad hoc networks. Wireless Communications and Mobile Computing, 11(7), 796–812. doi:10.1002/wcm.869.

    Article  Google Scholar 

  4. Dang, D. N. M., Dang, H. N., Do, C. T., & Hong, C. S. (2013). An enhanced multi-channel MAC for vehicular ad hoc networks. In Wireless communications and networking conference (WCNC), 7–10 (pp. 351–355). doi:10.1109/WCNC.2013.6554589.

  5. Karamad, E., & Ashtiani, F. (2008). A modified 802.11-based MAC scheme to assure fair access for vehicle-to-roadside communications. Computer Communications, 31(12), 2898–2906. doi:10.1016/j.comcom.2008.01.030.

    Article  Google Scholar 

  6. Harigovindan, V., Babu, A., & Jacob, L. (2012). Ensuring fair access in IEEE 802.11p-based vehicle-to-infrastructure networks. EURASIP Journal on Wireless Communications and Networking, 1, 1–17. doi:10.1186/1687-1499-2012-168.

    Article  Google Scholar 

  7. Lei, X., Qun, L., Weizhen, M., Jie, W., & Daoxu, C. (2009). Achieving efficiency and fairness for association control in vehicular networks. In 17th IEEE international conference on network protocols, 13–16 (pp. 324–333). doi:10.1109/ICNP.2009.5339670.

  8. Alasmary, W., & Basir, O. (2011). Achieving efficiency and fairness in 802.11-based vehicle-to-infrastructure communications. In IEEE 73rd vehicular technology conference (VTC Spring), 15–18 (pp. 1–6).

  9. Almalag, M. S., Olariu, S., & Weigle, M. C. (2012). TDMA cluster-based MAC for VANETs (TC-MAC). In IEEE international symposium on a world of wireless, mobile and multimedia networks (WoWMoM), 25–28 (pp. 1–6). doi:10.1109/WoWMoM.2012.6263796.

  10. Torabi, N., & Ghahfarokhi, B. S. (2014). A TDMA-based channel access scheme for achieving fairness in inter-vehicle communications. In 4th international e-conference on computer and knowledge engineering (ICCKE), 29–30 (pp. 747–752).

  11. Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A comprehensive survey on vehicular ad hoc network. Journal of Network and Computer Applications, 37, 380–392. doi:10.1016/j.jnca.2013.02.036.

    Article  Google Scholar 

  12. IEEE Standard for Information technology Local and metropolitan area networks Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments (2010). IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE Std 802.11n-2009, and IEEE Std 802.11w-2009).

  13. IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-Channel Operation (2006). IEEE Std 1609.4-2006-Test (pp. 1-82).

  14. Uzcátegui, R. A. (2009). WAVE a tutorial. IEEE Communications Magazine, 47, 126–133.

    Article  Google Scholar 

  15. IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) - Resource Manager (2006). IEEE Std 1609.1-2006 (pp. 1–71)

  16. IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) - Security Services for Applications and Management Messages (2006). IEEE Std 1609.2-2006, 1–105. doi:10.1109/IEEESTD.2006.243731.

  17. IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) - Networking Services (2007). IEEE Std 1609.3-2007, 1-99. doi:10.1109/IEEESTD.2007.353212

  18. Zhigang, W., Lichuan, L., MengChu, Z., & Ansari, N. (2008). A position-based clustering technique for ad hoc intervehicle communication. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 38(2), 201–208. doi:10.1109/TSMCC.2007.913917.

    Article  Google Scholar 

  19. Dean, A. J., & Brennan, S. N. (2009). Terrain-based road vehicle localization on multi-lane highways. In American control conference, 10–12 (pp. 707–712). doi:10.1109/ACC.2009.5160078.

  20. Lai, Y. C., Lin, P., Liao, W., & Chen, C. M. (2011). A region-based clustering mechanism for channel access in vehicular ad hoc networks. IEEE Journal on Selected Areas in Communications, 29(1), 83–93. doi:10.1109/JSAC.2011.110109.

    Article  Google Scholar 

  21. Rawashdeh, Z., & Masud Mahmud, S. (2012). A novel algorithm to form stable clusters in vehicular ad hoc networks on highways. EURASIP Journal on Wireless Communications and Networking, 1(2012), 1–13. doi:10.1186/1687-1499-2012-15.

    Google Scholar 

  22. Chung, T.-Y., Wen-Mei, C., & Fong-Ching, Y. (2012). Intelligent GPS-less speed detection and clustering in VANET. In Fourth international conference on ubiquitous and future networks (ICUFN), 4–6 (pp. 145–150). doi:10.1109/ICUFN.2012.6261682.

  23. Almalag, M. S., & Weigle, M. C. (2010). Using traffic flow for cluster formation in vehicular ad-hoc networks. In IEEE 35th conference on local computer networks (LCN), 10–14 (pp. 631–636). doi:10.1109/LCN.2010.5735785.

  24. Hassanabadi, B., Shea, C., Zhang, L., & Valaee, S. (2014). Clustering in vehicular ad hoc networks using affinity propagation. Ad Hoc Networks, 13(Part B), 535–548. doi:10.1016/j.adhoc.2013.10.005.

    Article  Google Scholar 

  25. Hang, S., & Xi, Z. (2007). Clustering-based multichannel MAC protocols for QoS provisionings over vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 56(6), 3309–3323. doi:10.1109/TVT.2007.907233.

    Article  Google Scholar 

  26. Vodopivec, S., Bester, J., & Kos, A. (2012). A survey on clustering algorithms for vehicular ad-hoc networks. In 35th international conference on telecommunications and signal processing (TSP), 3–4 (pp. 52–56). doi:10.1109/TSP.2012.6256251.

  27. Koyamparambil Mammu, A. S., Hernandez-Jayo, U., & Sainz, N. (2013). Cluster-based MAC in VANETs for safety applications. In International conference on advances in computing, communications and informatics (ICACCI), 22–25 (pp. 1424–1429). doi:10.1109/ICACCI.2013.6637388.

  28. Qi, C., Jiang, D., & Delgrossi, L. (2009). IEEE 1609.4 DSRC multi-channel operations and its implications on vehicle safety communications. In IEEE vehicular networking conference (VNC), 28–30 (pp. 1–8). doi:10.1109/VNC.2009.5416394.

  29. van Eenennaam, M., van de Venis, A., & Karagiannis, G. (2012). Impact of IEEE 1609.4 channel switching on the IEEE 802.11p beaconing performance. In IFIP Wireless Days (WD), 21–23 (pp. 1–8). doi:10.1109/WD.2012.6402853.

  30. Ghandour, A. J., Felice, M. D., Bononi, L., & Artail, H. (2012). Modeling and simulation of WAVE 1609.4-based multi-channel vehicular ad hoc networks. In Proceedings of the 5th international ICST conference on simulation tools and techniques, Desenzano del Garda, Italy (pp. 148–156).

  31. Nidhi, & Lobiyal, D. K. (2012). Performance evaluation of realistic Vanet using traffic light scenario. International Journal of Wireless & Mobile Networks, 4(1), 237–249.

    Article  Google Scholar 

  32. Almalag, M. S., & Weigle, M. C. (2013). Mac protocols for Vanet. In S. Basagni, M. Conti, S. Giordano, & I. Stojmenovic (Eds.), Mobile ad hoc networking: Cutting edge directions (pp. 599–618). Hoboken: Wiley.

    Chapter  Google Scholar 

  33. Shah, N. (2012). Efficient medium access control protocol for vehicular ad-hoc net. Joondalup: School of Engineering, Edith Cowan University.

    Google Scholar 

  34. Chong, H., Dianati, M., Tafazolli, R., Xing, L., & Xuemin, S. (2012). A novel distributed asynchronous multichannel MAC scheme for large-scale vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 61(7), 3125–3138. doi:10.1109/TVT.2012.2205596.

    Article  Google Scholar 

  35. Omar, H. A., Weihua, Z., & Li, L. (2013). VeMAC: A TDMA-based MAC protocol for reliable broadcast in VANETs. IEEE Transactions on Mobile Computing, 12(9), 1724–1736. doi:10.1109/TMC.2012.142.

    Article  Google Scholar 

  36. Zhang, L., Liu, Z., Zou, R., Guo, J., & Liu, Y. (2014). A scalable CSMA and self-organizing TDMA MAC for IEEE 802.11 p/1609.x in VANETs. Wireless Personal Communications, 74(4), 1197–1212. doi:10.1007/s11277-013-1572-3.

    Article  Google Scholar 

  37. Hadded, M., Zagrouba, R., Laouiti, A., Muhlethaler, P., & Azouz Saidane, L. (2014). An adaptive TDMA slot assignment strategy for vehicular ad hoc networks. Journal of Machine to Machine Communications, 1(2), 175–194. doi:10.13052/jmmc2246-137X.126.

    Article  Google Scholar 

  38. Li-Ling, H., Chih-Yung, C., Cheng-Chang, C., & Yu-Chieh, C. (2012). BUFE-MAC: A protocol with bandwidth utilization and fairness enhancements for mesh-backbone-based VANETs. IEEE Transactions on Vehicular Technology, 61(5), 2208–2221. doi:10.1109/TVT.2012.2189592.

    Article  Google Scholar 

  39. Ganeriwal, S., Kumar, R., & Srivastava, M. B. (2003). Timing-sync protocol for sensor networks. In Proceedings of the 1st international conference on Embedded networked sensor systems (pp. 138–149).

  40. Xiang, L., & Yeung, K. L. (2006). Joint access point placement and channel assignment for 802.11 wireless LANs. IEEE Transactions on Wireless Communications, 5(10), 2705–2711. doi:10.1109/TWC.2006.04003.

    Article  Google Scholar 

  41. Torabi, N., & Ghahfarokhi, B. S. (2014). Implementation of the IEEE 802.11p/1609.4 DSRC/WAVE in NS-2. In 4th international e-conference on computer and knowledge engineering (ICCKE), 29–30 (pp. 519–524). doi:10.1109/ICCKE.2014.6993388.

  42. Cognitive Radio Cognitive Network Simulator. (2015). http://faculty.uml.edu/Tricia_Chigan/Research/CRCN_Simulator.htm.

  43. Gukhool, B. S., & Cherkaoui, S. (2008). IEEE 802.11p modeling in NS-2. In 33rd IEEE conference on local computer networks, 14–17 (pp. 622–626). doi:10.1109/LCN.2008.4664254.

  44. SUMO—Simulation of Urban MObility. (2015). http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/. Accessed 21.

  45. Karnadi, F. K., Zhi Hai, M., & Kun-Chan, L. (2007). Rapid generation of realistic mobility models for VANET. In Wireless communications and networking conference, 11–15 (pp. 2506–2511). doi:10.1109/WCNC.2007.467.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Torabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, N., Ghahfarokhi, B.S. A bandwidth-efficient and fair CSMA/TDMA based multichannel MAC scheme for V2V communications. Telecommun Syst 64, 367–390 (2017). https://doi.org/10.1007/s11235-016-0170-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0170-6

Keywords

Navigation