Skip to main content
Log in

Effect of transient and non-transient models on the performance of PLC

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper presents the characteristic analysis of channel gain for two conductor type power line communication (PLC) system using analytical transient model. The analysis of frequency responses is presented by incorporating various lengths of transmission lines and loads at terminal side. It is suggested that variations in the frequency responses of PLC channel, especially under transient condition within the transmission line (TL) can be investigated more effectively by using the transient model. Performance of transient model is found to be significantly better than the previously available work in the literature. More accurate results are achieved in simulation as compared to results obtained from typical \(\pi \) model of lumped circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. Li, F., Qiao, W., Sun, H., & Wan, H. (2010). Smart transmission grid: vision and framework. IEEE Transactions on Smart Grid, 1, 168–177.

    Article  Google Scholar 

  2. Galli, S., & Lys, T. (2015). Next generation narrowband (under 500 kHz) power line communications (PLC) standards. IEEE China Communications, 12, 1–8.

    Article  Google Scholar 

  3. Galli, S., Scaglione, A., & Wang, Z. (2011). For the grid and through the grid: the role of power line communications in the smart grid. Proceedings of the IEEE, 99(6), 998–1027.

    Article  Google Scholar 

  4. Zimmermann, M., & Dostert, K. (2002). A multipath model for the powerline channel. IEEE Transactions on Communications, 50(4), 553–559.

    Article  Google Scholar 

  5. Matthias, G., Rapp, M., & Dostert, K. (2004). Power line channel characteristics and their effect on communication system design. IEEE Communication Magazine, 42(4), 78–86.

    Article  Google Scholar 

  6. Zimmermann, M., & Dostert, K. (2000). An analysis of the broadband noise scenario in powerline networks. In International symposium on powerline communications and its applications.

  7. Tonello, A. M., & Versolatto, F. (2011). Bottom-up statistical PLC channel modeling part I: random topology model and efficient transfer function computation. IEEE Transactions on Power Delivery, 26(2), 891–898.

    Article  Google Scholar 

  8. Tonello, A. M., & Versolatto, F. (2010). Bottom-up statistical PLC channel modeling part II: inferring the statistics. IEEE Transactions on Power Delivery, 25(4), 2356–2363.

    Article  Google Scholar 

  9. Tonello, A.M., & Versolatto, F. (2009). New results on top-down and bottom-up statistical PLC channel modeling. In Third workshop on power line communications.

  10. Banwell, T., & Galli, S. (2005). A Novel approach to the modeling of the indoor power line channel part I: circuit analysis and companion model. IEEE Transactions on Power Delivery, 20(2), 655–663.

    Article  Google Scholar 

  11. Galli, S., & Banwell, T. (2005). A novel approach to the modeling of the indoor power line channel part II: transfer function and its properties. IEEE Transactions on Power Delivery, 20(3), 1869–1878.

    Article  Google Scholar 

  12. Sung, T.E., Scaglione, A., & Galli, S. (2008). Time-varying power line block transmission models over doubly selective channels. In IEEE international symposium on power line communications and its applications.

  13. Anatory, J., Theethayi, N., & Thottappillil, R. (2009). Power-line communication channel model for interconnected networks part I: two-conductor system. IEEE Transactions on Power Delivery, 24(1), 118–123.

    Article  Google Scholar 

  14. Anatory, J., Theethayi, N., & Thottappillil, R. (2009). Power-line communication channel model for interconnected networks part II: multiconductor system. IEEE Transactions on Power Delivery, 24(1), 124–128.

    Article  Google Scholar 

  15. Anatory, J., Kissaka, M. M., & Mvungi, N. H. (2007). Channel model for broadband power-line communication. IEEE Transactions on Power Delivery, 22(1), 135–141.

    Article  Google Scholar 

  16. Meng, H., Chen, S., Guan, Y. L., Law, C. L., So, P. L., Gunawan, E., et al. (2004). Modeling of transfer characteristics for the broadband power line communication channel. IEEE Transactions on Power Delivery, 19(3), 1057–1064.

    Article  Google Scholar 

  17. Lazaropoulos, A. G., & Cottis, P. G. (2009). Transmission characteristics of overhead medium voltage power line communication channels. IEEE Transactions on Power Delivery, 24(3), 1164–1173.

    Article  Google Scholar 

  18. Marti, J. (1982). Accurate modeling of frequency-dependent transmission lines in electromagnetic transient simulations. IEEE Power Engineering Review, PER–2(1), 29–30.

  19. Semlyen, A. (1981). Contributions to the theory of calculation of electromagnetic transients on transmission lines with frequency dependent parameters. IEEE Transactions on Power Apparatus and Systems, PAS–100(102), 848–856.

    Article  Google Scholar 

  20. Liao, Y., & Kezunovic, M. (2009). Online optimal transmission line parameter estimation for relaying applications. IEEE Transactions on Power Delivery, 24(1), 96–102.

    Article  Google Scholar 

  21. Fan, S., Li, Y., Li, X., & Bi, L. (2009). A method for the calculation of frequency-dependent transmission line transformation matrices. IEEE Transactions on Power Systems, 24(2), 552–560.

    Google Scholar 

  22. Semlyen, A., & Roth, A. (1977). Calculation of exponential step responses accurately for three base frequencies. IEEE Transactions on Power Apparatus and Systems, 96(2), 667–672.

    Article  Google Scholar 

  23. Semlyen, A., & Ramirez, A. (2008). Direct frequency domain computation of transmission line transients due to switching operations. IEEE transactions on Power Delivery, 23(4), 2255–2261.

    Article  Google Scholar 

  24. Nguyen, T. T. (2010). Phase-domain transmission circuit model for electromagnetic transient analysis-representation of characteristic impedance matrix by a passive network. In IEEE power energy soc. Minneapolis, MN, USA: Gen. Meeting.

  25. Duffy, O. (2004). RF transmission line loss calculator. v1.01, [Online]. Available: http://archive.today/4wZmj

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Masood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masood, B., Usman, M., Din, F.U. et al. Effect of transient and non-transient models on the performance of PLC. Telecommun Syst 65, 55–64 (2017). https://doi.org/10.1007/s11235-016-0211-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0211-1

Keywords

Navigation