Skip to main content

Advertisement

Log in

Design of different planar geometries of antenna arrays for isoflux radiation in GEO satellites

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The synthesis of different planar geometries of antenna arrays for isoflux radiation is presented in this paper. This synthesis considers the reduction of the side lobe level and the isoflux radiation requirements for Geostationary Earth Orbit satellites. The behavior of the radiation is studied in three geometries of two-dimensional antenna arrays such as uniform planar arrays, aperiodic planar arrays (APA) and concentric ring arrays (CRA). The well-known methods of genetic algorithm and particle swarm optimization are utilized for the optimization problem. In this way, the designs of APA and CRA presented in this paper could provide an acceptable solution for reducing the antenna hardware and simplifying the power feeding even more than results presented previously in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stutzman, W. L., & Thiele, G. A. (1998). Antenna theory and design (2nd ed.). New York: Wiley.

    Google Scholar 

  2. Gavish, B. (1997). LEO/MEO systems—global mobile communication systems. Telecommunication Systems, 8, 99–141.

    Article  Google Scholar 

  3. Gavish, B., & Kalvenes, J. (1997). The impact of intersatellite communication links on LEOS performance. Telecommunication Systems, 8, 159–190.

    Article  Google Scholar 

  4. McMahon, G., Sugden, G., & Septiawan, R. (2003). Class dependent traffic allocation in a LEO satellite network. Telecommunication Systems, 22, 241–266.

    Article  Google Scholar 

  5. Russo, P., d’Ippolito, A., Ferrarotti, A., & Ruggieri, M. (1997). A C/I advantageous satellite system configuration for land mobile applications. Telecommunication Systems, 8, 319–340.

    Article  Google Scholar 

  6. Sandau, R., Roeser, H.-P., & Valenzuela, A. (2010). Small satellite missions for earth observation: New developments and trends. Berlin: Springer.

    Book  Google Scholar 

  7. Hay, S. G., Bateman, D. G., Bird, T. S., & Cooray, F. R. (1999). Simple Ka band Earth coverage antennas for LEO satellites. IEEE Antennas and Propagation Symposium, 1, 708–711.

    Google Scholar 

  8. Ravanelli, R., Iannicelli, C., Baldecchi, N., & Franchini, F. Multi-objective optimization of an isoflux antenna for LEO satellite down-handling link. Sentinel GMES ESA program.

  9. Jin, J., Wang, H. L., Zhu, W. M., & Liu, Y. Z. (2006). Array patterns synthesizing using genetic algorithm. Progress In Electromagnetics Research Symposium, 2, 64–68.

    Google Scholar 

  10. Aerts, W., & Vandenbosch, G. A. E. (2004). Optimal inter-element spacing in linear array antennas and its application in satellite communications. In: Proceedings of the 34th European microwave conference.

  11. Koleck, T. (2003). Active antenna coverage synthesis for GEO satellite using genetic algorithm. Antennas and Propagation Society International Symposium, 1, 142–144.

    Google Scholar 

  12. Morabito, A. F., Lagana, A. R., & Isernia, T. (2010). On the optimal synthesis of ring symmetric shaped patterns by means of uniformly spaced planar arrays. Progress In Electromagnetics Research B, 20, 33–48.

    Article  Google Scholar 

  13. Vigano, M. C., Toso, G., Angeletti, P., Lager, I. E., Yarovoy, A., & Caratelli, D. (2010). Sparse antenna array for earth coverage satellite applications. In: Proceedings of the Fourth European Conference on Antennas and Propagation.

  14. Unz, H. (1960). Linear arrays with arbitrarily distributed elements. IEEE Transactions on Antennas and Propagation, 8(2), 222–223.

    Article  Google Scholar 

  15. Chen, K., Yun, X., He, Z., & Han, C. (2007). Synthesis of sparse planar arrays using modified real genetic algorithm. IEEE Trans on Antennas and Propagation, 55, 1067–1073.

    Article  Google Scholar 

  16. Wang, Q., Yao, M., & You, H. (2008). Application of genetic algorithm optimization in the low profile phased array antenna for satellite communication on the move. In: Proceedings of the Second International symposium on the intelligent information technology application, (pp. 649–652).

  17. Son, S. H., Park, U. H., Jeon, S. I., & Kim, C. J. (2004). Low sidelobe design by position perturbation in mobile array antenna for satellite communications. Vehicular Technology Conference, 1(13), 10.

    Google Scholar 

  18. Maffett, A. L. (1962). Array factors with nonuniform spacing parameter. IRE Transactions on Antennas and Propagation, 10, 131–136.

    Article  Google Scholar 

  19. Reyna, A., Panduro, M. A., & del Rio-Bocio, C. (2012). Design of aperiodic planar arrays for isoflux radiation in GEO satellites by applying evolutionary optimization. Expert Systems with Applications, 39(8), 6872–6878.

  20. Harrington, R. (1961). Sidelobe reduction by nonuniform element spacing. IEEE Transactions on Antennas and Propagation, 9, 187–192.

    Article  Google Scholar 

  21. Reyna, Alberto, Panduro, Marco A., & del Rio, Carlos. (2011). Design of concentric ring antenna arrays for isoflux radiation in GEO satellites. IEICE Electronics Express, 8(7), 484–490.

    Article  Google Scholar 

  22. Mandal, D., Ghoshal, S. P., & Bhattacharjee, A. K. (2011). Optimized radii and excitations with concentric circular antenna array for maximum sidelobe level reduction using wavelet mutation based particle swarm optimization techniques. Telecommunication Systems, 47, 1–11, 2011, doi:10.1007/s11235-011-9482-8.

  23. Biller, L., & Friedman, G. (1973). Optimization of radiation patterns for an array of concentric ring sources. IEEE Transactions Audio Electroacoustic, 21(1), 57–61.

    Article  Google Scholar 

  24. Haupt, Randy L. (2008). Optimized element spacing for low sidelobe concentric ring arrays. IEEE Transactions on Antenna and Propagation, 56(1), 266–268.

    Article  Google Scholar 

  25. Bulatsyk, O. O., Katsenelenbaum, B. Z., Yu Topolyuk, P., & Voitovich, N. N. (2010). Phase optimization problems: Applications in wave field theory. Weinheim: Wiley.

    Book  Google Scholar 

  26. Rahmat-Samii, Y., & Michielssen, E. (1999). Electromagnetic optimisation by genetic algorithms. New York: Wiley.

    Google Scholar 

  27. Robinson, J., & Rahmat-Samii, Y. (2004). Particle swarm optimization in electromagnetics. IEEE Transactions on Antennas and Propagation, 52, 397–407.

    Article  Google Scholar 

  28. Haupt, R. L. (1993). Thinned arrays using genetic algorithms. IEEE Transactions on Antennas and Propagation, 41(2), 993–999.

    Article  Google Scholar 

  29. Sherman, K. N. (2002). Phased array shaped multi-beam optimization for LEO satellite communications using a genetic algorithm. In: Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology.

  30. Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: Developments, applications and resources. In: Proceedings Congress Evolutionary Computation, (pp. 81–86).

  31. Reyna, A., & Panduro, M. A. (2008). Optimization of a scannable pattern for uniform planar antenna arrays to minimize the side lobe level. Journals of Electromagnetics Waves and Applications, 22(16), 2241–2250.

    Article  Google Scholar 

  32. Reyna, A., & Panduro, M. A. (2010). Design of steerable concentric rings array using rotation properties and evolutionary optimization. In: Proceedings of the Fourth European Conference on Antennas and Propagation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Panduro.

Appendix

Appendix

Since the Fig. 1, trigonometric math functions are defined as:

$$\begin{aligned} \sin \theta= & {} \frac{y^{\prime }}{R_s \left( \theta \right) }\nonumber \\ R_s \left( \theta \right)= & {} \frac{y^{\prime }}{\sin \theta } \end{aligned}$$
(6.1)
$$\begin{aligned} \cos \theta= & {} \frac{\left( {h+a} \right) -x^{\prime }}{R_s \left( \theta \right) }\nonumber \\ x^{\prime }= & {} \left( {h+a} \right) -R_s \left( \theta \right) .\cos \theta \end{aligned}$$
(6.2)

Besides, consider the canonical implicit equation of an ellipse as follows:

$$\begin{aligned} \frac{x^{\prime 2}}{a^{2}}+\frac{y^{\prime 2}}{b^{2}}= & {} 1\nonumber \\ y^{\prime }= & {} b\sqrt{1-\frac{x^{\prime 2}}{a^{2}}} \end{aligned}$$
(6.3)

Then, the math calculation for the prescribed radiation pattern \(R_{s}(\theta )\) is obtained by substituting Eqs. (2) and (3) in (1).

$$\begin{aligned}&R_s^2 \left( \theta \right) \left( {\frac{\sin ^{2}\theta }{b^{2}}+\frac{\cos ^{2}\theta }{a^{2}}} \right) +R_s \left( \theta \right) \left( {\frac{-2\left( {h+a} \right) \cos \theta }{a^{2}}} \right) \nonumber \\&\quad +\,\left( {\frac{\left( {h+a} \right) ^{2}}{a^{2}}-1} \right) =0 \end{aligned}$$
(6.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyna, A., Panduro, M.A., del Rio-Bocio, C. et al. Design of different planar geometries of antenna arrays for isoflux radiation in GEO satellites. Telecommun Syst 65, 269–279 (2017). https://doi.org/10.1007/s11235-016-0227-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0227-6

Keywords

Navigation