Skip to main content

A teletraffic model for the Physical Downlink Control Channel in LTE

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Recent advances in mobile handsets have led to new trends in mobile broadband data consumption, with a huge increase of signaling traffic generated by always-connected devices. Thus, a proper planning of control channels in mobile networks is necessary to avoid network capacity problems and provide an appropriate quality of service to the end user. A key issue in network planning is the availability of a complete and accurate system model. In this paper, an analytical performance model for the Long Term Evolution (LTE) Physical Downlink Control Channel (PDCCH) is constructed based on queuing theory. Unlike previous works, the proposed model considers important network features, such as link adaptation, and can be tuned with available network performance statistics. Model assessment is carried out by comparing performance estimates with request-level simulations and real performance measurements taken from a live LTE network. Results show that the proposed model can predict the PDCCH load distribution in a live network accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. 3GPP TR 125.913, Universal Mobile Telecommunications System (UMTS); LTE; Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN), v7.3 (2013)

  2. Sesia, S., Toufik, I., & Baker, M. (2009). LTE, the UMTS Long Term Evolution: from theory to practice. New York: Wiley.

    Book  Google Scholar 

  3. Hoikkanen, A. (2007). Economics of 3G long-term evolution: The business case for the mobile operator. In International conference on wireless and optical communications networks, WOCN (pp. 1–5)

  4. Gordejuela-Sanchez, F., Zhang, J. (2009). LTE access network planning and optimization: A service-oriented and technology-specific perspective. In IEEE global telecommunications conference, GLOBECOM (pp. 1–5)

  5. Lempiainen, J., & Manninen, M. (2001). Radio interface system planning for GSM/GPRS/UMTS. Berlin: Springer.

    Google Scholar 

  6. Laiho, J., Wacker, A., & Novosad, T. (2002). Radio network planning and optimisation for UMTS. New York: Wiley.

    Google Scholar 

  7. NSN, Understanding Smartphone Behavior in the Network, Nokia Solutions and Networks Smart Labs, white paper (2013)

  8. Persson, F. (2007). Voice over IP realized for the 3GPP Long Term Evolution. In IEEE 66th vehicular technology conference, VTC (pp. 1436–1440)

  9. 3GPP TS 36.211, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation, v12.3 (2014)

  10. 3GPP TS 36.321, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification, v12.3 (2014)

  11. 3GPP TR 36.824, Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); LTE coverage enhancements, v11 (2012)

  12. Puttonen, J., Henttonen, T., Kolehmainen, N., Aschan, K., Moisio, M., Kela, P. (2008). Voice-over-IP performance in UTRA Long Term Evolution Downlink. In IEEE 67th vehicular technology conference, VTC (pp. 2502–2506)

  13. Dan, W., Haifeng, J. (2012). Research of calculating CFI value used in LTE system. In IEEE 9th international conference on Fuzzy systems and knowledge discovery (FSKD) (pp. 2220–2223)

  14. Love, R., Kuchibhotla, R., Ghosh, A., Ratasuk, R., Classon, B., Blankenship, Y. (2008). Downlink control channel design for 3GPP LTE. In IEEE wireless communications and networking conference, WCNC (pp. 813–818)

  15. Liu, J., Love, R., Stewart, K., Buckley, M.E. (2009). Design and analysis of LTE physical downlink control channel. In IEEE 69th vehicular technology conference, VTC (pp. 1–5)

  16. Villa, D.L., Castellanos, C.U., Kovács, I.Z., Frederiksen, F., Pedersen, K.I. (2008). Performance of downlink UTRAN LTE under control channel constraints. In IEEE 68th vehicular technology conference, VTC. (pp. 2512–2516)

  17. Capozzi, F., Laselva, D., Frederiksen, F., Wigard, J., Kovács, I.Z., Mogensen, P.E. (2009). UTRAN LTE downlink system performance under realistic control channel constraints. In IEEE 70th vehicular technology conference, VTC (pp. 1–5)

  18. Jingxiu, L., Wigard, J., Zhao, Z., Laselva, D., Frederiksen, F. (2010). On the impact of realistic control channel constraints in UTRAN LTE TDD system. In IEEE 16th Asia-Pacific conference on communications (APCC) (pp. 1–5)

  19. Jani, P., Puupponen, H.H., Aho, K., Henttonen, T., Moisio, M. (2010). Impact of control channel limitations on the LTE VoIP capacity. In IEEE ninth international conference on networks (ICN) (pp. 77–82)

  20. Lien, S. Y., Chen, K. C., & Lin, Y. (2011). Toward ubiquitous massive accesses in 3GPP machine-to-machine communications. IEEE Communications Magazine, 49(4), 66.

    Article  Google Scholar 

  21. Calin, D., & Kim, B. H. (2013). LTE application and congestion performance. Bell Labs Technical Journal, 18(1), 5.

    Article  Google Scholar 

  22. Osti, P., Lassila, P., Aalto, S., Larmo, A., & Tirronen, T. (2014). Analysis of PDCCH performance for M2M traffic in LTE. IEEE Transactions on Vehicular Technology, 63(9), 4357.

    Article  Google Scholar 

  23. Pedraza, S., Wille, V., Toril, M., Ferrer, R., Escobar, J. (2003). Dimensioning of signaling capacity on a cell basis in GSM/GPRS. In 57th IEEE vehicular technology conference, VTC (pp. 155–159)

  24. Luna-Ramírez, S., Toril, M., & Wille, V. (2011). Performance analysis of dedicated signalling channels in GERAN by retrial queues. Wireless Personal Communications, 60(2), 215.

    Article  Google Scholar 

  25. Toril, M., Wille, V., Luna, S., & Jarvinen, K. (2011). Network performance model for location area re-planning in GERAN. Computer, 55(12), 2791.

    Google Scholar 

  26. Hong, D., & Rappaport, S. S. (1986). Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures. IEEE Transactions on Vehicular Technology, 35(3), 77.

    Article  Google Scholar 

  27. Fang, Y., & Chlamtac, I. (1999). Teletraffic analysis and mobility modeling of PCS networks. IEEE Transactions on Communications, 47(7), 1062.

    Article  Google Scholar 

  28. Rappaport Stephen, S. (1993) Traffic performance of cellular communication systems with heterogeneous call and platform types. In IEEE 2nd international conference on universal personal communications: gateway to the 21st century (pp. 690–695)

  29. Fang, Y. (2003). Thinning schemes for call admission control in wireless networks. IEEE Transactions on Computers, 52(5), 685.

    Article  Google Scholar 

  30. Rappaport, S. S. (1991). The multiple-call hand-off problem in high-capacity cellular communications systems. IEEE Transactions on Vehicular Technology, 40(3), 546.

    Article  Google Scholar 

  31. Li, W., & Alfa, A. S. (1999). A PCS network with correlated arrival process and splitted-rating channels. IEEE Journal on Selected Areas in Communications, 17(7), 1318.

    Article  Google Scholar 

  32. Tran-Gia, P., & Mandjes, M. (1997). Modeling of customer retrial phenomenon in cellular mobile networks. IEEE Journal on Selected Areas in Communications, 15(8), 1406.

    Article  Google Scholar 

  33. Marsan, M. A., De Carolis, G., Leonardi, E., Cigno, R Lo, & Meo, M. (2001). Efficient estimation of call blocking probabilities in cellular mobile telephony networks with customer retrials. IEEE Journal on Selected Areas in Communications, 19(2), 332.

    Article  Google Scholar 

  34. Lagrange, X., Godlewski, P. (1995). Teletraffic analysis of a hierarchical cellular network. In IEEE 45th vehicular technology conference, VTC (pp. 882–886)

  35. Fitzpatrick, P., Lee, C. S., & Warfield, B. (1997). Teletraffic performance of mobile radio networks with hierarchical cells and overflow. IEEE Journal on Selected Areas in Communications, 15(8), 1549.

    Article  Google Scholar 

  36. Bi, Q., Vitebsky, S., Yang, Y., Yuan, Y., & Zhang, Q. (2008). Performance and capacity of cellular ofdma systems with voice-over-ip traffic. IEEE Transactions on Vehicular Technology, 57(6), 3641.

    Article  Google Scholar 

  37. Wang, H., & Iversen, V. B. (2008). eletraffic Performance Analysis of Multi-class OFDM-TDMA Systems with AMC (p. 102)., Wireless Systems and Mobility in Next Generation Internet: Lecture Notes in Computer Science Berlin: Springer.

  38. Luo, J., Li, X. (2012). Physical downlink control channel format selection of evolved node b in long term evolution system. In 5th international conference on biomedical engineering and informatics (BMEI) (pp. 1494–1498)

  39. Atencia, I., & Moreno, P. (2004). A discrete-time Geo/G/1 retrial queue with general retrial times. Queueing Systems, 48, 5.

    Article  Google Scholar 

  40. Atencia, I. (2014). A discrete-time system with service control and repairs. International Journal of Applied Mathematics and Computer Science, 24, 471.

    Article  Google Scholar 

  41. Buenestado, V., Ruiz-Avilés, J. M., Toril, M., Luna-Ramírez, S., & Mendo, A. (2014). Analysis of throughput performance statistics for benchmarking LTE networks. IEEE Communications Letters, 18(9), 1607.

    Article  Google Scholar 

  42. Tijms, H. C. (2003). A first course in stochastic models. Amsterdam: Wiley.

    Book  Google Scholar 

  43. Stewart, W. J. (1994). Introduction to the numerical solution of Markov chains (Vol. 41). Princeton: Princeton University Press.

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the Spanish Ministry of Economy and Competitiveness (TIN2012-36455) and Optimi-Ericsson, Agencia IDEA (Consejería de Ciencia, Innovación y Empresa, Junta de Andalucía, ref. 59288) and FEDER

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Fernández-Segovia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Segovia, J.A., Luna-Ramírez, S., Toril, M. et al. A teletraffic model for the Physical Downlink Control Channel in LTE. Telecommun Syst 65, 511–523 (2017). https://doi.org/10.1007/s11235-016-0249-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0249-0

Keywords