Skip to main content
Log in

A novel adaptive spectrum access protocol in cognitive radio with primary multicast network, secondary user selection and hardware impairments

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose an adaptive spectrum access protocol for secondary users (SUs) be used to access licensed bands in cognitive radio networks. Specifically, if the primary network, which uses multicast communication to transmit data from one primary source to multiple primary destinations, satisfies a required system quality of service (QoS), SUs can access the licensed bands, follows an underlay spectrum sharing. Otherwise, a secondary base (SB) station must assist the primary network in obtaining the QoS so that it can find opportunities to use the bands, i.e., cooperation-based spectrum access. To enhance the performance for the secondary network, in terms of outage probability (OP), various best-user selection methods are proposed. Moreover, we take into consideration the impact of hardware impairments on the OP of both primary and secondary networks. We derive exact and asymptotic closed-form expressions of the OP over Rayleigh fading channel. From the analytical results, an optimal value of maximal interference threshold and an optimal fraction of the SBs’ transmit power to the primary data are obtained when the secondary network operates on the underlay and the cooperation-based spectrum access modes, respectively. Finally, Monte Carlo simulations are performed to verify the theoretical derivations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, G. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  2. Goldsmith, A., Jafar, S., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  3. Kim, J. B., & Kim, D. (2012). Outage probability and achievable diversity order of opportunistic relaying in cognitive secondary radio networks. IEEE Transactions on Communications, 60(9), 2456–2466.

    Article  Google Scholar 

  4. Guo, Y., Yang, G., Zhang, N., Zhou, W., & Zhang, P. (2010). Outage performance of relay-assisted cognitive-radio system under spectrum sharing constraints. Electronics Letters, 46(2), 182–183.

    Article  Google Scholar 

  5. Hussain, N., Ziri-Castro, K., Jayalath, D., & Arafah, M. (2016). Decode-to-cooperate: A sequential Alamouti-coded cooperation strategy in dual-hop wireless relay networks. Telecommunication Systems. doi:10.1007/s11235-016-0181-3.

  6. Duy, T. T., Alexandropoulos, G. C., Vu, T. T., Vo, N.-S., & Duong, T. Q. (2016). Outage performance of cognitive cooperative networks with relay selection over double-Rayleigh fading channels. IET Communications, 10(1), 57–64.

    Article  Google Scholar 

  7. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.

    Article  Google Scholar 

  8. Jiang, C., Zhang, H., Han, Z., Cheng, J., Ren, Y., & Hanzo, L. (2016). On the outage probability of information sharing in cognitive vehicular networks. In Proceedings of IEEE international conference on communications (ICC2016) (pp. 1–6).

  9. Xu, W., Zhang, J., Zhang, P., & Tellambura, C. (2012). Outage probability of decode-and-forward cognitive relay in presence of primary user’s interference. IEEE Communications Letters, 16(8), 1252–1255.

    Article  Google Scholar 

  10. Han, Y., & Ting, S. H. (2009). Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Transactions on Wireless Communications, 8(10), 4945–4950.

    Article  Google Scholar 

  11. Son, P. N., Har, D., & Kong, H. Y. (2015). Smart power allocation for secrecy transmission in reciprocally cooperative spectrum sharing. IEEE Transactions on Vehicular Technology, 64(11), 5395–5400.

    Article  Google Scholar 

  12. Oh, J., & Choi, W. (2010). A hybrid cognitive radio system: A combination of underlay and overlay approaches. In Proceedings of 2010 IEEE 72nd vehicular technology conference fall (VTC 2010-Fall) (pp. 1–5).

  13. Senthuran, S., Anpalagan, A., & Das, O. (2012). Throughput analysis of opportunistic access strategies in hybrid underlay/overlay cognitive radio networks. IEEE Transactions on Wireless Communications, 11(6), 2024–2035.

    Article  Google Scholar 

  14. Song, H., Hong, J.-P., & Choi, W. (2013). On the optimal switching probability for a hybrid cognitive radio system. IEEE Transactions on Wireless Communications, 12(4), 1594–1605.

    Article  Google Scholar 

  15. Zou, J., Xiong, H., Wang, D., & Chen, C. W. (2013). Optimal power allocation for hybrid overlay/underlay spectrum sharing in multiband cognitive radio networks. IEEE Transactions on Vehicular Technology, 62(4), 1827–1837.

    Article  Google Scholar 

  16. Kader, M. F., Asaduzzaman, & Hoque, M. M. (2013). Hybrid spectrum sharing with cooperative secondary user selection in cognitive radio networks. KSII Transactions on Internet and Information Systems, 7(9), 2081–2100.

  17. Usman, M., & Koo, I. (2014). Access strategy for hybrid underlay–overlay cognitive radios with energy harvesting. IEEE Sensors Journal, 14(9), 3164–3173.

    Article  Google Scholar 

  18. Zuo, J., Zhao, L., Bao, Y., & Zou, C. (2015). Energy-efficient power allocation for cognitive radio networks with joint overlay and underlay spectrum access mechanism. ETRI Journal, 37(3), 471–479.

    Article  Google Scholar 

  19. Chiti, F., Fantacci, R., Pierucci, L., & Privitera, N. (2016). Optimal joint MIMO and modulation order selection for network coded multicast wireless communications. Telecommunication Systems, 61(3), 433–441.

    Article  Google Scholar 

  20. Duy, T. T., & Son, P. N. (2015). Secrecy performances of multicast underlay cognitive protocols with partial relay selection and without eavesdropper’s information. KSII Transactions on Internet and Information Systems, 9(11), 4623–4643.

    Google Scholar 

  21. Zhong, C., & Ratnarajah, T. (2012). Performance of user selection in cognitive broadcast channels. IEEE Transactions on Communications, 60(12), 3529–3534.

    Article  Google Scholar 

  22. Kim, S. I., Kim, I. M., & Heo, J. (2015). Secure transmission for multiuser relay networks. IEEE Transactions on Wireless Communications, 14(7), 3724–3737.

    Article  Google Scholar 

  23. Matthaiou, M., Papadogiannis, A., Bjornson, E., & Debbah, M. (2013). Two-way relaying under the presence of relay transceiver hardware impairments. IEEE Communications Letters, 17(6), 1136–1139.

  24. Duy, T. T., Duong, T. Q., da Costa, D. B., Bao, V. N. Q., & Elkashlan, M. (2015). Proactive relay selection with joint impact of hardware impairment and co-channel interference. IEEE Transactions on Communications, 63(5), 1594–1606.

    Article  Google Scholar 

  25. Duy, T. T., Thanh, T. L., & Bao., V. N. Q. (2014). A hybrid spectrum sharing approach in cognitive radio networks. In Proceedings of the international conference on computing, management and telecommunications (ComManTel 2014) (pp. 19–23).

  26. Kim, K. J., Wang, L., Duong, T. Q., Elkashlan, M., & Poor, H. V. (2014). Cognitive single carrier systems: Joint impact of multiple licensed transceivers. IEEE Transactions on Wireless Communications, 13(12), 6741–6755.

    Article  Google Scholar 

  27. Gradshteyn, I., & Ryzhik, I. (2007). Table of integrals, series, and products (7th ed.). New York: Academic.

    Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.01-2014.33.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Trung Duy.

Appendices

Appendix 1: Proof of Proposition 1

Firstly, the \(\mathrm{{SOP}}_\mathrm{{S}}^{\mathrm{{Ud}}}\) in (13) can be rewritten as

$$\begin{aligned} \mathrm{{SOP}}_\mathrm{{S}}^{\mathrm{{Ud}}}&= \underbrace{\Pr ( {{Y_{\max }} \le {\mathcal{I}_\mathrm{{P}}}/{\varPsi _\mathrm{{S}}},\,{Z_{1\max }}< {\rho _\mathrm{{S}}}} )}_{\mathrm{{OP}}1} \nonumber \\&\quad + \underbrace{\Pr ( {{Y_{\max }} > {\mathcal{I}_\mathrm{{P}}}/{\varPsi _\mathrm{{S}}},\,{Z_{2\max }} < {\rho _\mathrm{{S}}}} )}_{\mathrm{{OP2}}}, \end{aligned}$$
(60)

where,

$$\begin{aligned} {Z_{1\max }}&= \mathop {\max }\limits _{n = 1,\,2,\ldots ,N} \left( {\frac{{{\varPsi _\mathrm{{S}}}{\gamma _{4n}}}}{{{\kappa _\mathrm{{S}}}{\varPsi _\mathrm{{S}}}{\gamma _{4n}} + {\varPsi _\mathrm{{P}}}{\gamma _{3n}} + 1}}} \right) , \nonumber \\ {Z_{2\max }}&= \mathop {\max }\limits _{n = 1,\,2,\ldots ,N} \left( {\frac{{{\mathcal{I}_\mathrm{{P}}}{\gamma _{4n}}/{Y_{\max }}}}{{{\kappa _\mathrm{{S}}}{\mathcal{I}_\mathrm{{P}}}{\gamma _{4n}}/{Y_{\max }} + {\varPsi _\mathrm{{P}}}{\gamma _{3n}} + 1}}} \right) . \end{aligned}$$

Due to the independence between \({Y_{\max }}\) and \({Z_{1\max }},\) the probability OP1 in (60) can be rewritten as

$$\begin{aligned} \mathrm{{OP1}} = \Pr \left( {{Y_{\max }} \le {\mathcal{I}_\mathrm{{P}}}/{\varPsi _\mathrm{{S}}}} \right) \Pr \left( {{Z_{1\max }} < {\rho _\mathrm{{S}}}} \right) . \end{aligned}$$
(61)

By applying ([20], Eq. (22)) for \({Y_{\max }},\) we have

$$\begin{aligned} \Pr \left( {{Y_{\max }} \le \frac{{{\mathcal{I}_\mathrm{{P}}}}}{{{\varPsi _\mathrm{{S}}}}}} \right) = {\left( {1 - \exp \left( { - \frac{{{\lambda _2}{\mathcal{I}_\mathrm{{P}}}}}{{{\varPsi _\mathrm{{S}}}}}} \right) } \right) ^M}. \end{aligned}$$
(62)

Next, the probability \(\Pr ( {{Z_{1\max }} < {\rho _\mathrm{{S}}}} )\) can be formulated as

$$\begin{aligned}&\Pr \left( {{Z_{1\max }}< {\rho _\mathrm{{S}}}} \right) = {\left[ {\Pr \left( {\frac{{{\varPsi _\mathrm{{S}}}{\gamma _{4n}}}}{{{\kappa _\mathrm{{S}}}{\varPsi _\mathrm{{S}}}{\gamma _{4n}} + {\varPsi _\mathrm{{P}}}{\gamma _{3n}} + 1}} < {\rho _\mathrm{{S}}}} \right) } \right] ^N} \nonumber \\&\quad = {\left[ {\int _0^{ {+} \infty } {{f_{{\gamma _{3n}}}}( x ){F_{{\gamma _{4n}}}}\left( {\frac{{{\varPsi _\mathrm{{P}}}{\chi _\mathrm{{S}}}}}{{{\varPsi _\mathrm{{S}}}}}x + \frac{{{\chi _\mathrm{{S}}}}}{{{\varPsi _\mathrm{{S}}}}}} \right) dx} } \right] ^N}, \end{aligned}$$
(63)

where \({f_{{\gamma _{3n}}}}( x ) = {\lambda _3}\exp ( { - {\lambda _3}x} )\) is the probability density function (PDF) of the RV \({\gamma _{3n}}\) and \({F_{{\gamma _{4n}}}}( y ) = 1 - \exp ( { - {\lambda _4}y} )\) is the cumulative distribution function of the RV \({\gamma _{4n}}.\)

Substituting \({f_{{\gamma _{3n}}}}( x)\) and \({F_{{\gamma _{4n}}}}( y )\) into (63), after some manipulations, we obtain

$$\begin{aligned}&\Pr \left( {{Z_{1\max }} < {\rho _\mathrm{{S}}}} \right) \nonumber \\&\quad ={\left[ {1 - \frac{{{\lambda _3}}}{{{\lambda _3} + {\lambda _4}{\varPsi _\mathrm{{P}}}{\chi _\mathrm{{S}}}/{\varPsi _\mathrm{{S}}}}}\exp \left( { - {\lambda _4}\frac{{{\chi _\mathrm{{S}}}}}{{{\varPsi _\mathrm{{S}}}}}} \right) } \right] ^N}. \end{aligned}$$
(64)

Next, the probability OP2 in (60) can be given by

$$\begin{aligned} \mathrm{{OP2}} = \int _{{I_\mathrm{{P}}}/{\varPsi _\mathrm{{S}}}}^{ {+} \infty } {{f_{{Y_{\max }}}}( x){{[ {A( x )} ]}^N}dx}, \end{aligned}$$
(65)

where \(A( x) = \Pr ( {{\gamma _{4n}} < {\varPsi _\mathrm{{P}}}{\chi _\mathrm{{S}}}{\gamma _{3n}}x/{\mathcal{I}_\mathrm{{P}}} + {\chi _\mathrm{{S}}}x/{\mathcal{I}_\mathrm{{P}}}}),\) and \({f_{{Y_{\max }}}}( x )\) is the PDF of \({Y_{\max }},\) which is given as

$$\begin{aligned}&{f_{{Y_{\max }}}}( x ) \nonumber \\&\quad =\sum \limits _{b = 0}^{M - 1} {{{( { - 1} )}^b}C_{M - 1}^bM{\lambda _2}\exp \left( { - ( {b + 1} ){\lambda _2}x} \right) }, \end{aligned}$$
(66)

with \(C_{M - 1}^b = ( {M - 1} )!/b!/( {M - 1 - b} )!.\)

Next, similar to (63) and (64), the probability A(x) can be computed as

$$\begin{aligned} A( x)&= \int _0^{ {+} \infty } {{f_{{\gamma _{3n}}}}( y ){F_{{\gamma _{4n}}}}\left( {\frac{{{\varPsi _\mathrm{{P}}}{\chi _\mathrm{{S}}}}}{{{\mathcal{I}_\mathrm{{P}}}}}xy + \frac{{{\chi _\mathrm{{S}}}}}{{{\mathcal{I}_\mathrm{{P}}}}}x} \right) } dy \nonumber \\&= 1 - \frac{{{\lambda _3}}}{{{\lambda _3} + {\lambda _4}{\varPsi _\mathrm{{P}}}{\chi _\mathrm{{S}}}x/{\mathcal{I}_\mathrm{{P}}}}}\exp \left( { - {\lambda _4}\frac{{{\chi _\mathrm{{S}}}}}{{{\mathcal{I}_\mathrm{{P}}}}}x} \right) \nonumber \\&= 1 - \frac{\omega }{{\omega + x}}\exp \left( { - {\lambda _4}\frac{{{\chi _\mathrm{{S}}}}}{{{\mathcal{I}_\mathrm{{P}}}}}x} \right) . \end{aligned}$$
(67)

Using binomial expansion for \({[ {A( x )} ]^N},\) we obtain

$$\begin{aligned}&{[ {A( x)} ]^N} \nonumber \\&\quad = 1 + \sum \limits _{c = 1}^N {{{( { - 1} )}^c}C_N^c\frac{{{\omega ^c}}}{{{{( {\omega + x} )}^c}}}\exp \left( { - c{\lambda _4}\frac{{{\chi _\mathrm{{S}}}}}{{{\mathcal{I}_\mathrm{{P}}}}}x} \right) }, \end{aligned}$$
(68)

where \(C_N^c = N!/c!/( {N - c})!.\)

Combining (65), (66) and (68), we arrive at

$$\begin{aligned}&\mathrm{{OP2}} = 1 - {\left( {1 - \exp \left( { - {\lambda _2}\frac{{{\mathcal{I}_\mathrm{{P}}}}}{{{\varPsi _\mathrm{{S}}}}}} \right) } \right) ^M} \nonumber \\&\quad + \sum \limits _{b = 0}^{M - 1} {\sum \limits _{c = 1}^N {{{( { - 1} )}^{b + c}}C_{M - 1}^bC_N^cM{\lambda _2}{\omega ^c}\int _{{I_\mathrm{{P}}}/{\varPsi _\mathrm{{S}}}}^{ {+} \infty } {\frac{{\exp ( { - \xi x} )}}{{{{( {\omega + x} )}^c}}}} dx} }. \end{aligned}$$
(69)

Then, by applying ([27], Eq. (3.351.4)) for the integral in (69), we can obtain (70). Finally, combining (60)–(62), (64) and (70) together, we obtain (14).

$$\begin{aligned}&\mathrm{{OP2}} = 1 - {\left( {1 - \exp \left( { - {\lambda _2}{\mathcal{I}_\mathrm{{P}}}/{\varPsi _\mathrm{{S}}}} \right) } \right) ^M} \nonumber \\&\quad + \sum \limits _{b = 0}^{M - 1} {\sum \limits _{c = 1}^N {{{( { - 1} )}^{b + c}}C_{M - 1}^bC_N^cM{\lambda _2}{\omega ^c}} } \exp ( {\xi \omega } ) \nonumber \\&\quad \times \left[ {\frac{{{{( { - 1} )}^{c + 1}}{\xi ^{c - 1}}}}{{( {c - 1})!}}{E_1}\left( {\xi \left( {\omega + \frac{{{\mathcal{I}_\mathrm{{P}}}}}{{{\varPsi _\mathrm{{S}}}}}} \right) } \right) }\right. \nonumber \\&\quad \left. {+ \frac{{\exp ( { - \xi ( {\omega + {\mathcal{I}_\mathrm{{P}}}/{\varPsi _\mathrm{{S}}}} )} )}}{{{{( {\omega + {\mathcal{I}_\mathrm{{P}}}/{\varPsi _\mathrm{{S}}}} )}^{c - 1}}}}\sum \limits _{k = 0}^{c - 2} {{{( { - 1} )}^k}\frac{{{\xi ^k}{{( {\omega + {\mathcal{I}_\mathrm{{P}}}/{\varPsi _\mathrm{{S}}}})}^k}}}{{\prod \nolimits _{t = 0}^k {( {c - 1 - t})} }}} } \right] . \end{aligned}$$
(70)

Appendix 2: Proof of Corollary 1

Because \(\min ( {{\varPsi _\mathrm{{S}}},\,{\mathcal{I}_\mathrm{{P}}}/{Y_{\max }}})\mathop \approx \limits ^{{\varPsi _\mathrm{{S}}}> > {\mathcal{I}_\mathrm{{P}}}} {\mathcal{I}_\mathrm{{P}}}/{Y_{\max }},\) Eq. (11) can be approximated by

$$\begin{aligned} C_\mathrm{{S}}^{\mathrm{{Ud}},n}\mathop \approx \limits ^{{\varPsi _\mathrm{{S}}}> > {\mathcal{I}_\mathrm{{P}}}} {\log _2}\left( {1 + \frac{{{\mathcal{I}_\mathrm{{P}}}{\gamma _{4n}}/{Y_{\max }}}}{{{\kappa _\mathrm{{S}}}{\mathcal{I}_\mathrm{{P}}}{\gamma _{4n}}/{Y_{\max }} + {\varPsi _\mathrm{{P}}}{\gamma _{3n}} + 1}}} \right) . \end{aligned}$$
(71)

Then, similar to (65), the SOP of the secondary network can be formulated as

$$\begin{aligned}&\mathrm{{SOP}}_\mathrm{{S}}^{\mathrm{{Ud}}}\mathop \approx \limits ^{{\varPsi _\mathrm{{S}}}> > {\mathcal{I}_\mathrm{{P}}}} \nonumber \\&\Pr \left( {\mathop {\max }\limits _{n = 1,\,2,\ldots ,N} \left( {\frac{{{\mathcal{I}_\mathrm{{P}}}{\gamma _{4n}}/{Y_{\max }}}}{{{\kappa _\mathrm{{S}}}{\mathcal{I}_\mathrm{{P}}}{\gamma _{4n}}/{Y_{\max }} + {\varPsi _\mathrm{{P}}}{\gamma _{3n}} + 1}}} \right) < {\rho _\mathrm{{S}}}} \right) \nonumber \\&\mathop \approx \limits ^{{\varPsi _\mathrm{{S}}} \gg {\mathcal{I}_\mathrm{{P}}}} \int _0^{ {+} \infty } {{f_{{Y_{\max }}}}( x ){{[ {A( x)} ]}^N}dx}. \end{aligned}$$
(72)

Finally, with the same manner as (65)–(70), we can obtain (15).

Appendix 3: Proof of Corollary 2

At high \({\varPsi _\mathrm{{P}}}\) and \({\varPsi _\mathrm{{S}}},\) we can approximate (8) and (11), respectively as

$$\begin{aligned}&{\mathcal{I}_\mathrm{{P}}}\mathop \approx \limits ^{{\varPsi _\mathrm{{P}}},{\varPsi _\mathrm{{S}}} \rightarrow {+} \infty } \frac{{{\varPsi _\mathrm{{P}}}}}{{M{\lambda _0}{\chi _\mathrm{{P}}}}}\log \frac{1}{{1 - {Q_\mathrm{{P}}}}}, \end{aligned}$$
(73)
$$\begin{aligned}&C_\mathrm{{S}}^{\mathrm{{Ud}},n}\mathop \approx \limits ^{{\varPsi _\mathrm{{P}}},{\varPsi _\mathrm{{S}}} \rightarrow {+} \infty } \nonumber \\&\quad {\log _2}\left( {1 + \frac{{\min \left( {\mu ,\,\log \left( {\frac{1}{{1 - {Q_\mathrm{{P}}}}}} \right) /( {M{\lambda _0}{\chi _\mathrm{{P}}}{Y_{\max }}})} \right) {\gamma _{4n}}}}{{{\kappa _\mathrm{{S}}}\min \left( {\mu ,\,\log \left( {\frac{1}{{1 - {Q_\mathrm{{P}}}}}} \right) /( {M{\lambda _0}{\chi _\mathrm{{P}}}{Y_{\max }}} )} \right) {\gamma _{4n}} + {\gamma _{3n}}}}} \right) . \end{aligned}$$
(74)

From (74), similar to Appendix 1, the SOP of the secondary network can be formulated by

$$\begin{aligned} \mathrm{{SOP}}_\mathrm{{S}}^{\mathrm{{Ud}}}\mathop \approx \limits ^{{\varPsi _\mathrm{{P}}},{\varPsi _\mathrm{{S}}} \rightarrow {+} \infty }&\underbrace{\Pr ( {{Y_{\max }} \le \varTheta ,\,{Z_{3\max }}< {\rho _\mathrm{{S}}}} )}_{\mathrm{{OP3}}} \nonumber \\&\quad + \underbrace{\Pr ( {{Y_{\max }} > \varTheta ,\,{Z_{4\max }} < {\rho _\mathrm{{S}}}} )}_{\mathrm{{OP4}}}, \end{aligned}$$
(75)

where,

$$\begin{aligned} {Z_{3\max }}&= \mathop {\max }\limits _{n = 1,\,2,\ldots ,N} \left( {\frac{{\mu {\gamma _{4n}}}}{{{\kappa _\mathrm{{S}}}\mu {\gamma _{4n}} + {\gamma _{3n}}}}} \right) , \nonumber \\ {Z_{4\max }}&= \mathop {\max }\limits _{n = 1,\,2,\ldots ,N} \left( {\frac{{\varTheta \mu {\gamma _{4n}}/{Y_{\max }}}}{{{\kappa _\mathrm{{S}}}\varTheta \mu {\gamma _{4n}}/{Y_{\max }} + {\gamma _{3n}}}}} \right) . \end{aligned}$$

Similarly, we can calculate the probabilities OP3 and OP4, respectively as

$$\begin{aligned} \mathrm{{OP3}}&= {\left( {1 - \exp \left( { - {\lambda _2}\varTheta } \right) } \right) ^M}{\left( {\frac{{{\lambda _4}{\chi _\mathrm{{S}}}}}{{{\lambda _3}\mu + {\lambda _4}{\chi _\mathrm{{S}}}}}} \right) ^N}, \end{aligned}$$
(76)
$$\begin{aligned} \mathrm{{OP4}}&= \int _\varTheta ^{ {+} \infty } {{f_{{Y_{\max }}}}( x ){{[ {B( x )} ]}^N}dx}, \end{aligned}$$
(77)

where,

$$\begin{aligned} B( x) = \Pr \left( {\frac{{\varTheta \mu {\gamma _{4n}}/x}}{{{\kappa _\mathrm{{S}}}\varTheta \mu {\gamma _{4n}}/x + {\gamma _{3n}}}} < {\rho _\mathrm{{S}}}} \right) = 1 - \frac{\delta }{{\delta + x}}, \end{aligned}$$

with \(\delta = {\lambda _3}\varTheta \mu /( {{\lambda _4}{\chi _\mathrm{{S}}}} ).\)

After some manipulations as in Appendices 1 and 2, we can obtain (78).

$$\begin{aligned}&\mathrm{{OP4}} = 1 - {\left( {1 - \exp \left( { - {\lambda _2}\varTheta } \right) } \right) ^M} \nonumber \\&\quad + \sum \limits _{b = 0}^{M - 1} {\sum \limits _{c = 1}^N {{{( { - 1} )}^{b + c}}C_{M - 1}^bC_N^cM{\lambda _2}{\delta ^c}\exp \left( {( {b + 1} ){\lambda _2}\delta } \right) } } \nonumber \\&\quad \times \left[ {\frac{{{{( { - 1})}^{c + 1}}{{( {( {b + 1} ){\lambda _2}} )}^{c - 1}}}}{{( {c - 1} )!}}{E_1}\left( {( {b + 1} ){\lambda _2}( {\delta + \varTheta } )} \right) }\right. \nonumber \\&\quad \left. {+ \frac{{\exp ( { - ( {b + 1} ){\lambda _2}( {\delta + \varTheta } )} )}}{{{{( {\delta + \varTheta })}^{c - 1}}}}\sum \limits _{k = 0}^{c - 2} {{{( { - 1} )}^k}\frac{{{{( {( {b + 1} ){\lambda _2}} )}^k}{{( {\delta + \varTheta } )}^k}}}{{\prod \nolimits _{t = 0}^k {( {c - 1 - t} )} }}} } \right] . \end{aligned}$$
(78)

Finally, plugging (75), (76) and (78) together, we obtain (16) and finish the proof here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duy, T.T., Son, P.N. A novel adaptive spectrum access protocol in cognitive radio with primary multicast network, secondary user selection and hardware impairments. Telecommun Syst 65, 525–538 (2017). https://doi.org/10.1007/s11235-016-0251-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0251-6

Keywords

Navigation