Skip to main content
Log in

Performance of uncoordinated coexistence mechanisms in adhoc networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Dynamic spectrum sharing between uncoordinated devices is impaired by interference. Simple coexistence mechanism can reduce this interference and improve network performance. We analyze performance of some simple coexistence mechanisms in detail, where the decision to transmit a packet by a given device to its intended receiver is taken solely by the transmitter receiver pair without any central control. Accurate interference models are developed assuming a large number of transmitter-receiver pairs that are randomly distributed according to a Poisson spatial point process. These are used to derive accurate expressions for packet error rates in the case of direct sequence code division multiple access physical layer model and slotted packet transmission schemes. These results are then used to study the performance of the coexistence mechanisms and compare them with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gao, B., Jung-Min, Park, Yang, Y., & Roy, S. (2012). A taxonomy of coexistence mechanisms for heterogeneous cognitive radio networks operating in TV white spaces. IEEE Wireless Communications, 19(4), 41–48.

    Article  Google Scholar 

  2. Cacciapuoti, A., Caleffi, M., & Paura, L. (2015). Optimal strategy design for enabling the coexistence of heterogeneous networks in TV white space. IEEE Transactions on Vehicular Technology, 99, 1.

    Google Scholar 

  3. Karn, P. (1990). MACA: A new channel access method for packet radio. Proceedings of IEEE Computer Networking Conference (pp. 134–140).

  4. Garcia-Luna-Aceves, J.J., & Fullmer, C.L., (1998). Performance of floor acquisition multiple access in ad-hoc networks. Proceedings of IEEE ISCC (pp. 63–68).

  5. Hasan, A., & Andrews, J. G. (2007). The guard zone in wireless ad hoc networks. IEEE Transactions on Wireless Communications, 6(3), 897–906.

    Article  Google Scholar 

  6. Menon, R., Buehrer, R.M., & Reed, J.H. (2006). Impact of exclusion region and spreading in spectrum-sharing ad hoc networks. Proceedings of 1st International Workshop on Technology and Policy for Accessing Spectrum. ACM (no.7).

  7. Baccelli, F., Blaszczyszyn, B., & Muhlethaler, P. (2009). Stochastic analysis of spatial and opportunistic aloha. IEEE Journal on Selected Areas in Communications, 27(7), 1105–1119.

    Article  Google Scholar 

  8. Pursley, M. B. (1987). The role of spread spectrum in packet radio networks. Proceedings of the IEEE, 75(1), 116–134.

    Article  Google Scholar 

  9. Weber, S. P., Yang, X., Andrews, J. G., & de Veciana, G. (2005). Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Transactions on Information Theory, 51(12), 4091–4102.

    Article  Google Scholar 

  10. Qi, Q., Milstein, L. B., & Vaman, D.R. (2008). Cognitive radio based multi-user resource allocation in mobile ad hoc networks using multi-carrier CDMA modulation. IEEE Journal on Selected Areas in Communications, 26(1), 70–82.

  11. Sengupta, S., Chatterjee, M., & Kwiat, K. A. (2010). A game theoretic framework for power control in wireless sensor networks. IEEE Transactions on Computers, 26(1), 70–82.

    Google Scholar 

  12. Pompili, D., Melodia, T., & Akyildiz, I. F. (2010). A CDMA-based medium access control for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications, 8(4), 1899–1909.

    Article  Google Scholar 

  13. De, S., Qiao, C., Pados, D. A., Chatterjee, M., & Philip, S. J. (2004). An integrated cross-layer study of wireless CDMA sensor networks. IEEE Journal on Selected Areas in Communications, 8(4), 1899–1909.

    Google Scholar 

  14. Chakravarthy, V., Li, X., Wu, Z., Temple, M., Garber, F., Kannan, R., et al. (2009). Novel overlay/underlay cognitive radio waveforms using SD-SMSE framework to enhance spectrum efficiency-part I: Theoretical framework and analysis in AWGN channel. IEEE Transactions on Communications, 57(12), 3794–3804.

    Article  Google Scholar 

  15. Attar, A., Nakhai, M. R., & Aghvami, A. H. (2008). Cognitive radio transmission based on direct sequence. MC-CDMA IEEE Transactions Wireless Communications, 7(4), 1157–1162.

    Article  Google Scholar 

  16. Morrow, R. K, Jr., & Lehnert, J. S. (1989). Bit-to-bit error dependence in slotted DS/SSMA packet systems with random signature sequences. IEEE Transactions on Communications, 37(10), 1052–1061.

    Article  Google Scholar 

  17. Morrow, R. K, Jr., & Lehnert, J. S. (1992). Packet throughput in slotted ALOHA DS/SSMA radio systems with random signature sequences. IEEE Transactions on Communications, 40(7), 1223–1230.

    Article  Google Scholar 

  18. Sousa, E. S. (1990). Interference modeling in a direct-sequence spread-spectrum packet radio network. IEEE Transactions on Communications, 38(9), 1475–1482.

    Article  Google Scholar 

  19. Cheng, J., & Beaulieu, N. C. (2002). Accurate DS-CDMA bit-error probability calculation in Rayleigh fading. IEEE Transactions on Wireless Communications, 1(1), 3–15.

    Article  Google Scholar 

  20. Hamdi, K. A. (2007). Accurate DS-CDMA packet-error rate analysis in Rayleigh fading. IEEE Transactions on Communications, 55(3), 551–562.

    Article  Google Scholar 

  21. Sousa, E. S. (1992). Performance of a spread spectrum packet radio network link in a Poisson field of interferers. IEEE Transactions on Information Theory, 38(6), 1743–1754.

    Article  Google Scholar 

  22. ElSawy, H., & Hossain, E. (2013). A modified hard core point process for analysis of random CSMA wireless networks in general fading environments. IEEE Transactions on Communications, 61(4), 1520–1534.

    Article  Google Scholar 

  23. Sousa, E. S., & Silvester, J. A. (1990). Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio network. IEEE Journal on Selected Areas in Communications, 8(5), 762–771.

    Article  Google Scholar 

  24. Kaynia, M., Jindal, N., & Oien, G. E. (2011). Improving the performance of wireless ad hoc networks through MAC layer design. IEEE Transactions on Wireless Communications, 10(1), 240–252.

    Article  Google Scholar 

  25. Pinto, P. C., Giorgetti, A., Win, M. Z., & Chiani, M. (2009). A stochastic geometry approach to coexistence in heterogeneous wireless networks. IEEE Journal on Selected Areas in Communications, 27(7), 1268–1282.

    Article  Google Scholar 

  26. Ao, W. C., & Chen, K. C. (2012). Bounds and exact mean node degree and node isolation probability in interference-limited wireless ad hoc networks with general fading. IEEE Transactions on Vehicular Technologies, 61(5), 2342–2348.

    Article  Google Scholar 

  27. Win, M. Z., Pinto, P. C., & Shepp, L. A. (2009). A mathematical theory of network interference and its applications. Proceedings of the IEEE, 97(2), 205–230.

    Article  Google Scholar 

  28. Ganti, R. K., Baccelli, F., & Andrews, J. G. (2012). Series expansion for interference in wireless networks. IEEE Transactions on Information Theory, 58(4), 2194–2205.

    Article  Google Scholar 

  29. Ahmed, J., & Hamdi, K.A. (2010). On the coexistence of uncoordinated ad-hoc networks. Proceedings of IEEE GLOBECOM (pp. 1–5).

  30. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  Google Scholar 

  31. Hasan, A., & Andrews, J.G. (2004). The critical radius in CDMA ad hoc networks. Proceedings of IEEE GLOBECOM (pp. 3568–3572).

  32. Xuemin, H., Wang, C.-X., & Thompson, J. (2008). Interference modeling of cognitive radio networks. Proceedings of IEEE VTC (pp. 1851–1855).

  33. Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions with formulas, graphs, and mathematical tables (9th ed.). New York: Dover Publications.

    Google Scholar 

  34. Bharghavan, V., Demers, A., Shenker, S., & Zhang, L. (1994). MACAW: A media access protocol for wireless LAN’s. Proceedings of the Conference on Communication, Architectures, Protocols and Applications (pp. 212–225).

  35. Lehnert, J., & Pursley, M. (1987). Error probabilities for binary direct-sequence spread-spectrum communications with random signature sequences. Proceedings of IEEE VTC, 35(1), 87–98.

    Google Scholar 

  36. Barry, D. A., Culligan-Hensley, P. J., & Barry, S. J. (1995). Real values of the W-function. ACM Transactions on Mathematical Software, 21(2), 161–171.

    Article  Google Scholar 

  37. Stoyan, D., Kendall, W. S., & Mecke, J. (1995). Stochastic geometry and its applications (2nd ed.). London: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junaid Ahmed.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, J., Hamdi, K.A. & Sohaib, S. Performance of uncoordinated coexistence mechanisms in adhoc networks. Telecommun Syst 67, 733–743 (2018). https://doi.org/10.1007/s11235-017-0361-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0361-9

Keywords

Navigation