Skip to main content

Advertisement

Log in

On the performance of wireless sensor networks with QSSK modulation in the presence of co-channel interference

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper proposes the use of quadrature space shift keying (QSSK) modulation for wireless sensor networks (WSNs). QSSK is a multiple input multiple output communication protocol that attracted substantial interest due to several promised inherent advantages. It has been shown in literature that QSSK scheme achieves high spectral efficiency with low average error probability, high energy efficiency, and very simple transmitter and receiver architectures. Hence, its use in WSNs is very promising to ameliorate the major limitations of such networks. The performance of a WSN with QSSK modulation and in the presence of co-channel interference is studied in this paper. A closed form expression for the average pair wise error probability is derived and used to obtain a tight upper bound on the overall average bit error ratio. Obtained results verified the superiority of QSSK scheme as compared to traditional modulation techniques especially for high spectral efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arampatzis, T., Lygeros, J., & Manesis, S. (2005). A survey of applications of wireless sensors and wireless sensor networks. In IEEE International symposium on, mediterrean conference on control and automation intelligent control.

  2. Borges, L. M., Velez, F. J., & Lebres, A. S. (2014). Survey on the characterization and classification of wireless sensor network applications. IEEE Communications Surveys and Tutorials, vol. 16(no. 4), 1860–1890.

    Article  Google Scholar 

  3. Althunibat, S., Antonopoulos, A., Karatsakli, E., Granelli, F., & Verikoukis, C. (2016). Countering intelligent-dependent malicious nodes in target detection wireless sensor networks. IEEE Sensors Journal, 16(23), 8627–8639.

    Google Scholar 

  4. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  5. Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30(14), 2826–2841.

    Article  Google Scholar 

  6. Polastre, J., Szewczyk, R., & Culler, D. (2005). Telos: Enabling ultra-low power wireless research. In Fourth International Symposium on Information Processing in Sensor Networks, IPSN 2005 (pp. 364–369).

  7. XBOW MICA2 Mote Specifications. http://www.xbow.com.

  8. Yu, Y., Krishnamachari, B., & Prasanna, V. K. (2004). Energy-latency tradeoffs for data gathering in wireless sensor networks. IEEE INFOCOM, 2004. doi:10.1109/INFCOM.2004.1354498.

  9. Son, D., Krishnamachari, B., & Heidemann, J. (2006). Experimental study of concurrent transmission in wireless sensor networks. In Proceedings of the 4th international conference on Embedded networked sensor systems. ACM.

  10. Bagaa, M., Challal, Y., Ksentini, A., Derhab, A., & Badache, N. (2014). Data aggregation scheduling algorithms in wireless sensor networks: Solutions and challenges. IEEE Communications Surveys and Tutorials, vol. 16(no. 3), 1339–1368.

    Article  Google Scholar 

  11. Gao, S., Qian, L., & Vaman, D. R. (2008). Distributed energy efficient spectrum access in wireless cognitive radio sensor networks. In IEEE Wireless communications and networking conference (WCNC).

  12. Shojafar, M., Abolfazli, S., Mostafaei, H., & Singhal, M. (2015). Improving channel assignment in multi-radio wireless mesh networks with learning automata. Wireless Personal Communications, 82(1), 61–80.

    Article  Google Scholar 

  13. Zhu, J., Song, Y., Jiang, D., & Song, H. (2016). Multi-armed bandit channel access scheme with cognitive radio technology in wireless sensor networks for the internet of things. IEEE Access, 4, 4609–4617.

    Article  Google Scholar 

  14. Chiwewe, T. M., & Hancke, G. P. (2012). A distributed topology control technique for low interference and energy efficiency in wireless sensor networks. IEEE Transactions on Industrial Informatics, 8(1), 11–19.

    Article  Google Scholar 

  15. Kumar, S., Sharma, A., & Raghuvanshi, S. S. (2011). Energy efficient scheduling algorithm with interference reduction for wireless sensor networks. In International conference on computational intelligence and communication networks, Gwalior, (pp. 328–332).

  16. Liang, S., Ge, Y., Jiang, S., & Tan, H. P. (2014). A lightweight and robust interference mitigation scheme for wireless body sensor networks in realistic environments. In IEEE Wireless communications and networking conference (WCNC), Istanbul, (pp. 1697–1702).

  17. Razi, A., & Abedi, A. (2011). Interference reduction in Wireless Passive Sensor Networks using directional antennas. In 4th Annual caneus fly by wireless workshop, Montreal, QC (pp. 1–4).

  18. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications surveys and tutorials, 15(2), 551–591.

    Article  Google Scholar 

  19. Althunibat, S., Abu-Al-Aish, A., Shehab, W. F. A., & Alsawalmeh, W. H. (2016). Auction-based data gathering scheme for wireless sensor networks. IEEE Communications Letters, 20(6), 1223–1226.

    Article  Google Scholar 

  20. Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys and Tutorials, vol. 19(no. 2), 828–854.

    Article  Google Scholar 

  21. Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2015). Quadrature spatial modulation. IEEE Transactions on Vehicular Technology, 64(6), 2738–2742.

    Article  Google Scholar 

  22. Basar, E. (2016). Index modulation techniques for 5G wireless networks. IEEE Communications Magazine, vol. 54(no. 7), 168–175.

    Article  Google Scholar 

  23. Jeganathan, J., Ghrayeb, A., Szczecinski, L., & Ceron, A. (2009). Space shift keying modulation for MIMO channels. IEEE Transactions on Wireless Communications, 8(7), 3692–3703.

    Article  Google Scholar 

  24. Mesleh, R. Y., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.

    Article  Google Scholar 

  25. Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2017). Quadrature spatial modulation-performance analysis and impact of imperfect channel knowledge. Transactions on Emerging Telecommunications Technologies, 28, e2905. doi:10.1002/ett.2905.

  26. Badarneh, O. S., & Mesleh, R. (2016). A comprehensive framework for quadrature spatial modulation in generalized fading scenarios. IEEE Transactions on Communications, 64(7), 2961–2970.

    Article  Google Scholar 

  27. Ikki, S. S., & Mesleh, R. (2012). A general framework for performance analysis of space shift keying (SSK) modulation in the presence of gaussian imperfect estimations. IEEE Communications Letters, 16(2), 228–230.

    Article  Google Scholar 

  28. Khalifeh, A., Al-Agtash, S., Tanash, R., & AlQudah, M., (2016). Deploying agents for monitoring and notification of wireless sensor networks. In 2016 IEEE 28th International conference on tools with artificial intelligence (ICTAI), San Jose, CA, (pp. 754–757).

  29. Akyildiz, I. F., & Wang, Xudong. (2005). A survey on wireless mesh networks. IEEE Communications Magazine, 43(9), S23–S30.

    Article  Google Scholar 

  30. Benyamina, D., Hafid, A., & Gendreau, M. (2012). Wireless mesh networks design? A survey. IEEE Communications Surveys and Tutorials, 14(2), 299–310.

    Article  Google Scholar 

  31. Craig, J. W. (1991). A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations. In MILCOM 91 - Conference record, McLean, VA, (vol. 2, pp. 571–575).

  32. Turin, G. L. (1960). The characteristic function of Hermitian quadratic forms in complex normal variables. Biometrika, 47(1/2), 199–201.

    Article  Google Scholar 

  33. Proakis, J. G. (1995). Digital communications. New York: McGraw-Hill.

    Google Scholar 

Download references

Acknowledgements

This work is supported by North Atlantic Treaty Organization (NATO), under the SPS Grant G4936 (Hybrid Sensor Network for Emergency Critical Scenarios).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saud Althunibat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Althunibat, S., Khalifeh, A. & Mesleh, R. On the performance of wireless sensor networks with QSSK modulation in the presence of co-channel interference. Telecommun Syst 68, 105–113 (2018). https://doi.org/10.1007/s11235-017-0382-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0382-4

Keywords

Navigation