Skip to main content

Advertisement

Log in

Heterogeneous coexistence between cognitive radio networks: a Markovian jump system method

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

With the increasing demand of wireless spectrum, different unlicensed wireless communication technologies have been applied in the television white space (TVWS). It is vital to understand that the mutual interference over TVWS due to incompatible protocol designs heavily degrades the quality of service of coexisting heterogeneous cognitive radio networks. In this paper, taking the activity of primary users into consideration, we formulate the heterogeneous coexistence problem over TVWS as a nonlinear Markovian jump system (NMJS) based on the Lotka–Volterra competition model. By using the local linearization method, we first obtain a linear Markovian jump system model (which approximates the NMJS linearly at the desired spectrum share) to the NMJS. Further, we obtain an effective feedback controller to the equilibrium assignment of the NMJS via solving a sufficient condition in the form of linear matrix inequalities. Third, we propose an IEEE 802.19.1-compatible spectrum sharing algorithm which enables the NMJS to converge to the assigned spectrum share. Finally, extensive simulations are conducted to validate the effectiveness of our proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Computer Networks, 50(13), 2127–2159.

    Article  Google Scholar 

  2. Liang, Y. C., Chen, K. C., Li, G. Y., & Mahonen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology, 60(7), 3386–3407.

    Article  Google Scholar 

  3. IEEE 802.22 Working Group. http://www.ieee802.org/22/.

  4. IEEE P802.11 task group af. Wireless LAN in the TV White Space. http://www.ieee802.org/11/Reports/tgafupdate.htm/.

  5. IEEE Std, IEEE 802.16 Working Group. (2010). IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Broadband Wireless Access Systems Amendment 2: Improved Coexistence Mechanisms for Licensed-Exampt Operation.

  6. ECMA Std, ECMA TC48-TG1. (2009). Standard ECMA392: MAC and PHY for Operation in TV White Space.

  7. Baykas, T., Kasslin, M., Cummings, M., & Kang, H. (2012). Developing a standard for TV white space coexistence: Technical challenges and solution approaches. IEEE Wireless Communications, 19(1), 10–22.

    Article  Google Scholar 

  8. IEEE 802.19 Task Group 1. Wireless Coexistence in the TV White Space. http://www.ieee802.org/19/pub/TG1.html.

  9. Bhattarai, S., Park, J., Gao, B., Bian, K., & William, L. (2016). An overview of dynamic spectrum sharing: Ongoing initiatives, chanllenges and a roadmap for future research. IEEE Transactions on Cognitive Communications and Networking, 2(2), 110–128.

    Article  Google Scholar 

  10. Bian, K., Park, J., Chen, L., & Li, X. (2014). Addressing the hidden terminal problem for heterogeneous coexistence between TDM and CSMA networks in white space. IEEE Transactions on Vehicular Technology, 63(9), 4450–4463.

    Article  Google Scholar 

  11. Cheng, Y. C., Wu, E. H., & Chen, G. H. (2015). A decentralized MAC protocol for unfairness problems in coexistent heterogeneous cognitive radio networks scenarios with collision-based primary users. IEEE Systems Journal, 10(1), 346–357.

    Article  Google Scholar 

  12. Tseng, L. C., Chien, F. T., Zhang, D., & Chang, R. Y. (2013). Network selection in cognitive heterogeneous networks using stochastic learning. IEEE Communications Letters, 17(12), 2304–2307.

    Article  Google Scholar 

  13. Cacciapuoti, A., Caleffi, M., & Paura, L. (2016). Optimal strategy design for enabling the coexistence of heterogeneous networks in TV white space. IEEE Transactions on Vehicular Technology, 65(9), 7361–7373.

    Article  Google Scholar 

  14. Filin, S., Baykas, T., Harada, H., & Kojima, F. (2016). IEEE standard 802.19.1 for TV white space coexistence. IEEE Communications Magazine, 54(3), 22–26.

    Article  Google Scholar 

  15. Bahrak, B., & Park, J. M. J. (2014). Coexistence decision making for spectrum sharing among heterogeneous wireless systems. IEEE Transactions on Wireless Communications, 13(3), 1298–1307.

    Article  Google Scholar 

  16. Bian, K., Park, J. M. J., Du, X., & Li, X. (2013). Ecology-inspired coexistence of heterogeneous wireless networks. In Proceedings of the IEEE Global Communications Conference, (pp. 4921–4926).

  17. Zhang, D., Liu, Q., Chen, L., & Xu, W. (2016). Ecology-based coexistence mechanism in heterogeneous cognitive radio networks. In Proceedings of the IEEE Global Communications Conference, (pp. 1–6).

  18. Yin, Y., Zheng, M., & Zhang, Q. (2016). Heterogeneous coexistence between cognitive radio networks over TV white space: A nonlinear control perspective. Transactions on Emerging Telecommunications Technologies, 27(11), 1530–1538.

    Article  Google Scholar 

  19. Abdelraheem, M., Abdel-Rahman, M. J., El-Nainay, M., & Midkiff, S. F. (2016). Spectrum-efficient resource allocation framework for cooperative opportunistic wireless networks. IEEE Transactions on Cognitive Communications and Networking, 2(3), 249–262.

    Article  Google Scholar 

  20. Agarwal, S., & De, S. (2016). eDSA: Energy-efficient dynamic spectrum access protocols for cognitive radio networks. IEEE Transactions on Mobile Computing, 15(12), 3057–3071.

    Article  Google Scholar 

  21. Murray, J. (2002). Mathematical biology I: An introduction. Berlin: Springer.

    Google Scholar 

  22. Tokeshi, M. (1998). Species coexistence: Ecological and evolutionary perspectives. USA: Wiley-Blackwell.

    Google Scholar 

  23. Brahma, S., & Chatterjee, M. (2009). Mitigating self-interference among IEEE 802.22 networks: A game theoretic perspective. In Proceedings of the IEEE Global Communications Conference, (pp. 1–6).

  24. Ko, C. H., & Wei, H. Y. (2010). Game theoretical resource allocation for inter-bs coexistence in IEEE 802.22. IEEE Transactions on Vehicular Technology, 59(4), 1729–1744.

    Article  Google Scholar 

  25. Gardellin, V., Das, S. K., & Lenzini, L. (2013). Self-coexistence in cellular cognitive radio networks based on the IEEE 802.22 standard. IEEE Wireless Communications, 20(2), 52–59.

    Article  Google Scholar 

  26. Zhang, H., Chu, X., Guo, W., & Wang, S. (2015). Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Communications Magazine, 53(3), 158–164.

    Article  Google Scholar 

  27. Han, S., Zhang, X., & Shin, K. G. (2016). Fair and efficient coexistence of heterogeneous channel widths in next-generation wireless LANs. IEEE Transactions on Mobile Computing, 15(11), 2749–2761.

    Article  Google Scholar 

  28. Zhang, D., Liu, Q., Chen, L., & Xu, W. (2017). Survey on coexistence of heterogeneous wireless networks in 2.4 GHz and TV white spaces. International Journal of Distributed Sensor Networks, 13(4), 1–20.

    Google Scholar 

  29. Mo, J., & Walrand, J. (1998). Fair end-to-end window-based congestion control. IEEE/ACM Transactions on Networking, 8(5), 556–567.

    Article  Google Scholar 

  30. Xiong, J., & Lam, J. (2006). Stabilization of discrete-time markovian jump linear systems via time-delayed controllers. Automatica, 42(5), 747–753.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Zheng.

Additional information

This work was supported by the Natural Science Foundation of China under Grants 61673371, 61273008 and 61673280, Liaoning Provincial Natural Science Foundation of China under Grant 20170540662, and Youth Innovation Promotion Association, Chinese Academy of Sciences (2015157).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, J., Zheng, M. & Zhang, Q. Heterogeneous coexistence between cognitive radio networks: a Markovian jump system method. Telecommun Syst 68, 563–572 (2018). https://doi.org/10.1007/s11235-017-0408-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0408-y

Keywords

Navigation