Skip to main content

Advertisement

Log in

Cooperative spectrum sensing with relay selection

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we evaluate the detection and false alarm probabilities for relay based spectrum sensing techniques using the energy detector. The communication process consists of two phases. In the first phase, the primary user P transmits and K relays listen. In the second phase, the relays amplify the signal to the fusion center where spectrum sensing based on the energy detector is performed. All relays transmit over orthogonal channels. We also consider cooperative spectrum sensing with best relay selection. Both opportunistic amplify and forward, partial and reactive relay selection are considered. The results are valid for Rayleigh fading channels in the absence or presence of a direct link between P and the fusion center D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. FCC. (2002). Spectrum policy task force. Technical report.

  2. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23, 201–220.

    Article  Google Scholar 

  3. Digham, F. F., Alouini, M. S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.

    Article  Google Scholar 

  4. Bhargavi, D., & Murthy, C. R. (2010). Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. In SPAWC.

  5. Man, L., Li, Y., & Demir, A. (2012). Matched filtering assisted energy detection for sensing weak primary user signals. In IEEE ICASSP.

  6. Atapattu, S., Tellambura, C., & Jiang, H. (2009). Relay based cooperative spectrum sensing in cognitive radio networks. In GLOBECOM.

  7. Atapattu, S., Tellambura, C., & Jiang, H. (2011). Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 4(10), 1232–1241.

    Article  Google Scholar 

  8. Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4, 40–62.

    Article  Google Scholar 

  9. Ghasemi, A., & Sousa, E. (2005). Collaborative spectrum sensing for opportunistic access in fading environments. In Proceedings of IEEE DySPAN (pp. 131–136).

  10. Visotsky, E., Kuffner, S., & Peterson, R. (2005). On collaborative detection of TV transmissions in support of dynamic spectrum sharing. In Proceedings of IEEE DySPAN (pp. 338–245).

  11. Unnikrishnan, J., & Veeravalli, V. V. (2008). Cooperative sensing for primary detection in cognitive radio. IEEE Journal on Selected Topics in Signal Processing, 21, 18–27.

    Article  Google Scholar 

  12. Li, Z., Yu, F., & Huang, M. (2009). A cooperative spectrum sensing consensus scheme in cognitive radio. In Proceedings of INFOCOM (pp. 2546–2550).

  13. Ganesa, G., & Li, Y. G. (2007). Cooperative spectrum sensing in cognitive radio, part I: Two user networks. IEEE Transactions on Wireless Communications, 6, 2204–2213.

    Article  Google Scholar 

  14. Ganesa, G., & Li, Y. G. (2007). Cooperative spectrum sensing in cognitive radio, part II: Multiuser networks. IEEE Transactions on Wireless Communications, 6, 2204–2213.

    Article  Google Scholar 

  15. Zhang, W., & Letaief, K. (2008). Cooperative spectrum sensing with transmit and relay diversity in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(12), 4761–4766.

    Article  Google Scholar 

  16. Alhamad, R., Wang, H., & Yao, Y.-D. (2017). Cooperative spectrum sensing with random access reporting channels in cognitive radio networks. IEEE Transactions on Vehicular Technology, 99, 1–13.

  17. Caso, G., De Nardis, L., Ferrante, G. C., & Di Benedetto, M. G. (2013). Cooperative spectrum sensing based on majority decision under CFAR and CDR constraints. In IEEE PIMRC.

  18. Ma, J., Zhao, G., & Li, Y. (2008). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(11), 4502–4507.

    Article  Google Scholar 

  19. Ejaz, W., Hattab, G., Cherif, N., Ibnkahla, M., Abdelkefi, F., & Siala, M. (2017). Cooperative spectrum sensing with heterogeneous devices: Hard combining versus soft combining. IEEE Systems Journal, 99, 1–12.

    Google Scholar 

  20. Guo, H., Reisi, N., Jiang, W., & Luo, W. (2017). Soft combination for cooperative spectrum sensing in fading channels. IEEE Access, 5, 975–986.

    Article  Google Scholar 

  21. Guo, H., Jiang, W., & Luo, W. (2017). Linear soft combination for cooperative spectrum sensing in cognitive radio networks. IEEE Communications Letters, 21(7), 1573–1576.

    Article  Google Scholar 

  22. Hwang, I., & Lee, J. W. (2017). Cooperative spectrum sensing with quantization combining over imperfect feedback channels. IEEE Transactions on Signal Processing, 65(3), 721–732.

    Article  Google Scholar 

  23. Quoc Bao, V. N., Duong, T. Q., da Costa, D. B., Alexandropoulos, G. C., & Nallanathan, A. (2013). Cognitive amplify-and-forward relaying with best relay selection in non-identical Rayleigh fading. IEEE Communications Letters, 17(3), 475–478.

    Article  Google Scholar 

  24. Michalopoulos, D. S., & Karagiannidis, G. K. (2008). Performance analysis of single relay selection in Rayleigh fading. IEEE Transactions on Wireless Communications, 7(10), 3718–3724.

    Article  Google Scholar 

  25. Suraweera, H. A., Smith, P. J., & Shafi, M. (2010). Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Transactions on Vehicular Technology, 59(4), 1811–1822.

    Article  Google Scholar 

  26. Zhao, Y., Adve, R., & Lim, T. J. (2006). Symbol error rate of selection amplify and forward relay systems. IEEE Communications Letters, 10, 757–759.

    Article  Google Scholar 

  27. Ikki, S. S., & Ahmed, M. H. (2008). Performance of multiple-relay cooperative diversity systems with best relay selection over Rayleigh fading channels. EURASIP Journal on Advances in Signal Processing, 17, 145.

    Google Scholar 

  28. Barua, B., Ngo, H. Q., & Shin, H. (2008). On the SEP of cooperative diversity with opportunistic relaying. IEEE Communications Letters, 12(10), 727–729.

    Article  Google Scholar 

  29. Krikidis, I., Thompson, J., McLaughlin, S., & Goertz, N. (2008). Amplify and for-ward with partial relay selection. IEEE Communications Letters, 12(4), 237–238.

    Article  Google Scholar 

  30. Boujemaa, H. (2010). Exact symbol error probability of cooperative systems with partial relay selection. European Transactions on Telecommunications, 21, 79–85.

    Google Scholar 

  31. Hussain, S. I., Alouini, M. S., Qaraqe, K., & Hasna, M. (2012). Reactive relay selection in underlay cognitive networks with fixed gain relays. In IEEE ICC.

  32. Digham, F. F., Alouini, M. S., & Simon, M. K. (2003) On the energy detection of unknown signals over fading channels. In Proceedings of IEEE ICC conference (pp. 3575–3579).

  33. Proakis, J. G. (1995). Digital communications (3rd ed.). New York: McGraw Hill.

    Google Scholar 

  34. Hasna, M., & Alouini, M. S. (2003). End-to-end performance of transmission systems with relays over Rayleigh fading channels. IEEE Transactions on Wireless Communications, 2, 1126–1131.

    Article  Google Scholar 

Download references

Acknowledgements

The sincere appreciation for the deanship of Scientific research at Saudi Electronic University for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Alhamad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendix A

Appendix A

The Cumulative Distribution Function (CDF) of \(\Gamma _{k}^{up}\) is equal to

$$\begin{aligned} F_{\Gamma _{k}^{up}}(x)= & {} 1-P(\Gamma _{k}^{up}>x) \nonumber \\= & {} 1-P(\Gamma _{PR}^{\max }>x)P(\Gamma _{R_{k}D}>x) \end{aligned}$$
(52)

We have

$$\begin{aligned} P(\Gamma _{PR}^{\max }> & {} x)=1-\prod _{j=1}^{K}P(\Gamma _{PR_{j}}\le x) \nonumber \\= & {} 1-\prod _{j=1}^{K}\left[ 1-e^{-\frac{x}{{\overline{\Gamma }}_{PR_{j}}}} \right] \nonumber \\= & {} 1-\sum _{n=0}^{2^{K}-1}(-1)^{b(n)}e^{-x\sum _{l=1}^{K}\frac{a_{n}(l)}{ {\overline{\Gamma }}_{PR_{l}}}} \end{aligned}$$
(53)

where \((a_{n}(1),\ldots ,a_{n}(K))\) is the binary representation of n and \( b(n)=\sum _{l=1}^{K}a_{n}(l).\)

Using (52) and (53), we deduce

$$\begin{aligned} F_{\Gamma _{k}^{up}}(x)=1-e^{-\frac{x}{{\overline{\Gamma }}_{R_{k}D}} }-\sum _{n=0}^{2^{K}-1}(-1)^{b(n)}e^{-x\sum _{l=1}^{K}\frac{a_{n}(l)}{ {\overline{\Gamma }}_{PR_{l}}}-\frac{x}{{\overline{\Gamma }}_{R_{k}D}}}. \end{aligned}$$
(54)

By a simple derivative, we deduce the PDF of \(\Gamma _{k}^{up}\):

$$\begin{aligned} f_{\Gamma _{k}^{up}}(x)=\frac{e^{-\frac{x}{{\overline{\Gamma }}_{R_{k}D}}}}{ {\overline{\Gamma }}_{R_{k}D}}+\sum _{n=0}^{2^{K}-1}(-1)^{b(n)}\frac{e^{-\frac{x }{\alpha _{k,n}}}}{\alpha _{k,n}}, \end{aligned}$$
(55)

where

$$\begin{aligned} \alpha _{k,n}=\frac{1}{\frac{1}{{\overline{\Gamma }}_{R_{k}D}}+\sum _{l=1}^{K} \frac{a_{n}(l)}{{\overline{\Gamma }}_{PR_{l}}}}. \end{aligned}$$
(56)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhamad, R., Boujemaa, H. Cooperative spectrum sensing with relay selection. Telecommun Syst 68, 631–642 (2018). https://doi.org/10.1007/s11235-017-0413-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0413-1

Keywords

Navigation