Skip to main content
Log in

On the fundamental limit to the use of cognitive radio in underwater acoustic sensor networks

  • Letter to the Editor
  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Cognitive communication is an effective solution to the spectrum scarcity issues in wireless networks. The underwater sensor networks are prone to large propagation delays which result in the fundamental limitation on introducing cognitive aspects in underwater scenario. This letter explores the fundamental limitation of using cognitive communication in large propagation delay underwater networks. This work proposes a method to find the optimal position of the secondary user, to minimize the interference to primary users, in an underwater cognitive acoustic network. The proposed method also considers the effect of channel randomness which is modeled using the log-normal shadowing model. The method can also be used to select and schedule the secondary user transmissions, from a set of secondary users, such that the interruption time to the primary users is minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.

    Article  Google Scholar 

  2. Bicen, A. O., Sahin, A. B., & Akan, O. B. (2012). Spectrum-aware underwater networks: Cognitive acoustic communications. IEEE Vehicular Technology Magazine, 7(2), 34–40.

    Article  Google Scholar 

  3. Luo, Y., Pu, L., Zuba, M., Peng, Z., & Cui, J. H. (2014). Challenges and opportunities of underwater cognitive acoustic networks. IEEE Transactions on Emerging Topics in Computing, 2(2), 198–211.

    Article  Google Scholar 

  4. Jin, L., Huang, D. D., Zou, L., & Zhang, A. Y. J. (2012). Cognitive acoustics: A way to extend the lifetime of underwater acoustic sensor networks. Cognitive Communications: Distributed Artificial Intelligence (DAI), Regulatory Policy and Economics, Implementation, 39(5), 106–112.

    Google Scholar 

  5. Hoque, S., & Arif, W. (2017). Performance analysis of cognitive radio networks with generalized call holding time distribution of secondary user. Telecommunication Systems, 66(1), 95–108.

    Article  Google Scholar 

  6. Salameh, O., De Turck, K., Bruneel, H., Blondia, C., & Wittevrongel, S. (2017). Analysis of secondary user performance in cognitive radio networks with reactive spectrum handoff. Telecommunication Systems, 65(3), 539–550.

    Article  Google Scholar 

  7. Duy, T. T., & Son, P. N. (2017). A novel adaptive spectrum access protocol in cognitive radio with primary multicast network, secondary user selection and hardware impairments. Telecommunication Systems, 65(3), 525–538.

    Article  Google Scholar 

  8. Biagi, M., Petroni, A., Colonnese, S., Cusani, R., & Scarano, G. (2016). On rethinking cognitive access for underwater acoustic communications. IEEE Journal of Oceanic Engineering, 41(4), 1045–1060.

    Article  Google Scholar 

  9. Yang, W. B., & Yang, T. C. (2006). Characterization and modeling of underwater acoustic communications channels for frequency-shift-keying signals. In OCEANS 2006 (pp. 1–6).

  10. Christhu, R. M., & Sukumaran, R. (2016). Stochastic network calculus for various fading techniques in underwater wireless communication. International Journal of Applied Mathematics and Statistics, 54(3), 100–112.

    Google Scholar 

  11. Llor, J., & Malumbres, M. P. (2013). Statistical modeling of large-scale signal path loss in underwater acoustic networks. Sensors, 13(2), 2279–2294.

    Article  Google Scholar 

  12. Fredricks, A., Colosi, J. A., Lynch, J. F., Gawarkiewicz, G., Chiu, C. S., & Abbot, P. (2005). Analysis of multipath scintillations from long range acoustic transmissions on the New England continental slope and shelf. The Journal of the Acoustical Society of America, 117(3), 1038–1057.

    Article  Google Scholar 

  13. Stojanovic, M. (2006). Underwater wireless communications: Current achievements and research challenges. IEEE Oceanic Engineering Society Newsletter, 41(2), 1–5.

    Google Scholar 

  14. Tomasi, B., Casari, P., Badia, L., & Zorzi, M. (2010). A study of incremental redundancy hybrid ARQ over Markov channel models derived from experimental data. In Proceedings of the fifth ACM international workshop on underwater networks (p. 4). London: ACM.

  15. Katsnelson, B., Petnikov, V., & Lynch, J. (2012). Fundamentals of shallow water acoustics. Berlin: Springer.

    Book  Google Scholar 

  16. Rappaport, T. S. (1996). Wireless communications: Principles and practice (Vol. 2). New Jersey: Prentice Hall PTR.

    Google Scholar 

  17. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313.

    Article  Google Scholar 

  18. Dennis, J. E., & Woods, D. J. (1987). Optimization on microcomputers: The Nelder–Mead simplex algorithm. New Computing Environments: Microcomputers in Large-Scale Computing, 11, 6–122.

    Google Scholar 

  19. Xie, P., Cui, J. H., & Lao, L. (2006). VBF: Vector-based forwarding protocol for underwater sensor networks. In International conference on research in networking (pp. 1216–1221). Berlin: Springer.

  20. Qureshi, U. M., Shaikh, F. K., Aziz, Z., Shah, S. M. Z. S., Sheikh, A. A., Felemban, E., et al. (2016). Rf path and absorption loss estimation for underwater wireless sensor networks in different water environments. Sensors, 16(6), 890.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Mridula.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mridula, K.M., Ameer, P.M. On the fundamental limit to the use of cognitive radio in underwater acoustic sensor networks. Telecommun Syst 71, 303–308 (2019). https://doi.org/10.1007/s11235-018-00538-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-00538-4

Keywords

Navigation