Skip to main content
Log in

Dynamic resource allocation for OFDMA femtocell networks: a game-theoretic approach

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Femtocells consisting of small femto base stations have emerged as an efficient solution for improving the capacity and coverage of wireless cellular networks. However, due to limited wireless radio resources, resource allocation is a key issue in two-tier femtocell networks. Motivated by this challenge, in this paper, we propose a resource allocation approach which satisfies the quality of service requirements and maximizes social welfare. Users compete with each other for a serving base station that fulfills their quality of service requirements, and the serving base stations prefer to serve more users to make more revenue. We model the competition among these rational decision makers as the Vickrey–Clarke–Groves auction game theory in which each user as a buyer submits a bid for resources, and each base station as a seller decides which users will win the auction and how much the winning users should pay and then it assigns the resources to the winning users. Unlike the previous studies, we also take into account macro user’s activity as cross-tier interference in the resource allocation process. We develop an algorithm based on Q-learning in which each user gradually learns from its own past information and adjusts its bid value to achieve the Nash equilibrium as the solution of the game without any interaction with other users. We also investigate the existence and uniqueness of the Nash equilibrium. Simulation results verify the accuracy of the numerical results obtained from the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications magazine, 46(9), 59.

    Article  Google Scholar 

  2. Zhang, J., & De la Roche, G. (2011). Femtocells: Technologies and deployment. Hoboken: Wiley.

    Google Scholar 

  3. Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.

    Article  Google Scholar 

  4. Wong, I. C., Forenza, A., Heath, R. W., & Evans, B. L. (2004). Long range channel prediction for adaptive OFDM systems. In Conference on signals, systems and computers, conference record of the thirty-eighth Asilomar (Vol. 1, pp. 732–736). IEEE.

  5. Wong, I. C., & Evans, B. L. (2005). Joint channel estimation and prediction for OFDM systems. In IEEE global telecommunications conference, GLOBECOM’05 (Vol. 4, pp. 5–pp). IEEE.

  6. Sadr, S., Anpalagan, A., & Raahemifar, K. (2009). Radio resource allocation algorithms for the downlink of multiuser OFDM communication systems. IEEE Communications Surveys & Tutorials, 11(3), 92.

    Article  Google Scholar 

  7. Sundaresan, K., & Rangarajan, S. (2009). Efficient resource management in OFDMA femto cells. In Proceedings of the tenth ACM international symposium on Mobile ad hoc networking and computing (pp. 33–42). ACM.

  8. Kulkarni, P., Chin, W. H., & Farnham, T. (2010). Radio resource management considerations for LTE femto cells. ACM SIGCOMM Computer Communication Review, 40(1), 26–30.

    Article  Google Scholar 

  9. Song, G., & Li, Y. (2005). Cross-layer optimization for OFDM wireless networks-part I: Theoretical framework. IEEE Transactions on Wireless Communications, 4(2), 614–624.

    Article  Google Scholar 

  10. Song, G., & Li, Y. (2005). Cross-layer optimization for OFDM wireless networks-part II: Algorithm development. IEEE Transactions on Wireless Communications, 4(2), 625–634.

    Article  Google Scholar 

  11. Song, G., Li, Y., Cimini, L. J., & Zheng, H. (2004, March). Joint channel-aware and queue-aware data scheduling in multiple shared wireless channels. In 2004 IEEE wireless communications and networking conference, 2004. WCNC (Vol. 3, pp. 1939-1944). IEEE.

  12. Wong, C. Y., Cheng, R. S., Lataief, K. B., & Murch, R. D. (1999). Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications, 17(10), 1747–1758.

    Article  Google Scholar 

  13. Wong, C. Y., Tsui, C. Y., Cheng, R. S., & Letaief, K. B. (1999). A real-time sub-carrier allocation scheme for multiple access downlink OFDM transmission. In IEEE VTS 50th vehicular technology conference (Vol. 2, pp. 1124–1128). IEEE.

  14. Pietrzyk, S., & Janssen, G. J. (2002). Multiuser subcarrier allocation for QoS provision in the OFDMA systems. In Proceedings IEEE 56th vehicular technology conference 2002 (Vol. 2, pp. 1077–1081). IEEE.

  15. Kim, K., Han, Y., & Kim, S. L. (2005). Joint subcarrier and power allocation in uplink OFDMA systems. IEEE Communications Letters, 9(6), 526–528.

    Article  Google Scholar 

  16. Wu, D., Yu, D., & Cai, Y. (2008). Subcarrier and power allocation in uplink OFDMA systems based on game theory. In 2008 international conference on neural networks and signal processing (pp. 522–526). IEEE.

  17. Huang, J., Subramanian, V. G., Agrawal, R., & Berry, R. (2009). Joint scheduling and resource allocation in uplink OFDM systems for broadband wireless access networks. IEEE Journal on Selected Areas in Communications, 27(2), 226–234.

    Article  Google Scholar 

  18. Ha, V. N., & Le, L. B. (2014). Fair resource allocation for OFDMA femtocell networks with macrocell protection. IEEE Transactions on Vehicular Technology, 63(3), 1388–1401.

    Article  Google Scholar 

  19. Le, L. B., Niyato, D., Hossain, E., Kim, D. I., & Hoang, D. T. (2013). QoS-aware and energy-efficient resource management in OFDMA femtocells. IEEE Transactions on Wireless Communications, 12(1), 180–194.

    Article  Google Scholar 

  20. Liang, Y. S., Chung, W. H., Ni, G. K., Chen, Y., Zhang, H., & Kuo, S. Y. (2012). Resource allocation with interference avoidance in OFDMA femtocell networks. IEEE Transactions on Vehicular Technology, 61(5), 2243–2255.

    Article  Google Scholar 

  21. Sun, Y., Jover, R. P., & Wang, X. (2012). Uplink interference mitigation for OFDMA femtocell networks. IEEE Transactions on Wireless Communications, 11(2), 614–625.

    Article  Google Scholar 

  22. Bayat, S., Louie, R. H., Han, Z., Vucetic, B., & Li, Y. (2014). Distributed user association and femtocell allocation in heterogeneous wireless networks. IEEE Transactions on Communications, 62(8), 3027–3043.

    Article  Google Scholar 

  23. Ha, V. N., & Le, L. B. (2014). Distributed base station association and power control for heterogeneous cellular networks. IEEE Transactions on Vehicular Technology, 63(1), 282–296.

    Article  Google Scholar 

  24. Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wang, X., & Quek, T. Q. (2015). Resource allocation for cognitive small cell networks: A cooperative bargaining game theoretic approach. IEEE Transactions on Wireless Communications, 14(6), 3481–3493.

    Article  Google Scholar 

  25. Lien, S. Y., Lin, Y. Y., & Chen, K. C. (2011). Cognitive and game-theoretical radio resource management for autonomous femtocells with QoS guarantees. IEEE Transactions on Wireless Communications, 10(7), 2196–2206.

    Article  Google Scholar 

  26. Myerson, R. B. (2013). Game theory. Cambridge: Harvard University Press.

    Google Scholar 

  27. Zhang, X., Zhang, Y., Shi, Y., Zhao, L., & Zou, C. (2012). Power control algorithm in cognitive radio system based on modified shuffled frog leaping algorithm. AEU-International Journal of Electronics and Communications, 66(6), 448–454.

    Article  Google Scholar 

  28. Liu, X., Ding, G., Yang, Y., Wu, Q., & Wang, J. (2013). A stochastic game framework for joint frequency and power allocation in dynamic decentralized cognitive radio networks. AEU-International Journal of Electronics and Communications, 67(10), 817–826.

    Article  Google Scholar 

  29. Zhu, K., Hossain, E., & Niyato, D. (2014). Pricing, spectrum sharing, and service selection in two-tier small cell networks: A hierarchical dynamic game approach. IEEE Transactions on Mobile Computing, 13(8), 1843–56.

    Article  Google Scholar 

  30. Rahman, T., & Sacchi, C. (2014). A cooperative radio resource management strategy for mobile multimedia LTE uplink. In 2014 IEEE aerospace conference (pp. 1–8).

  31. Krishna, V. (2002). Auction theory. London: Academic Press.

    Google Scholar 

  32. Lin, P., Feng, X., & Zhang, Q. (2014). Auction design for the wireless spectrum market. Berlin: Springer.

    Book  Google Scholar 

  33. Wang, X., Li, Z., Xu, P., Xu, Y., Gao, X., & Chen, H. H. (2010). Spectrum sharing in cognitive radio networks—An auction-based approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(3), 587–96.

    Article  Google Scholar 

  34. Lin, P., Feng, X., Zhang, Q. & Hamdi, M. (2013). Groupon in the air: A three-stage auction framework for spectrum group-buying. In: Proceedings IEEE INFOCOM 2013.

  35. Barbarossa, S., Carfagna, A., Sardellitti, S., Omilipo, M. & Pescosolido, L. (2011). Optimal radio access in femtocell networks based on Markov modeling of interferers’ activity. In Proceedings IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 3212–3215).

  36. Tech. Specif. Group radio access network - physical channel and modulation (Release 8), 3GPP TS 36.211.

  37. Lawrence, L. M., & Milgrom, P. R. (2002). Ascending auctions with package bidding. Frontiers Theoretical Economics, 1(1), 1–43.

    Google Scholar 

  38. Day, R., & Milgrom, P. (2008). Core-selecting package auctions. International Journal of game Theory, 36(3), 393–407.

    Article  Google Scholar 

  39. Cramton, P., Shoham, Y., & Steinberg, R. (2006). Combinatorial auctions. Cambridge: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Zeinali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourkabirian, A., Dehghan Takht Fooladi, M., Zeinali, E. et al. Dynamic resource allocation for OFDMA femtocell networks: a game-theoretic approach. Telecommun Syst 69, 51–59 (2018). https://doi.org/10.1007/s11235-018-0420-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-0420-x

Keywords

Navigation