Abstract
Network topology specifies the interconnections of nodes and is essential in defining the qualitative network behaviour which is known to be universal with the similar phenomena appearing in many complex networks in diverse application fields. Topology information may be uncertain, or several pieces of inconsistent topology information may exist. This paper studies a method for estimating the network topology directly from node data, and is motivated by mobile telecommunications networks (MTNs). Mutual information based dependency measure is first used to quantify the statistical node dependencies, and the topology estimate is then constructed with multidimensional scaling and distance thresholding. The topology estimate defines the graph structure of a Markov random field (MRF) model, and after model parameter identification, the MRF model can then be used e.g. in analyzing the effect of disturbances to the overall network state of MTN. The method is evaluated with MCMC generated data and is found to work in qualitative network behaviour situations that are practical from the application perspective of MTNs. With the same data, the method yields at least as good results as a typical constrained-based graph estimation method.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abdallah, S. (2002). Towards music perception by redundancy reduction and unsupervised learning in probabilistic models. Doc. Thesis: King’s College, London.
Abellán, J., Gómez-Olmedo, M., & Moral, S. (2006). Some variations on the PC algorithm. In Proc third European workshop on probabilistic graphical models.
Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97.
Basalaj, W. (1999). Incremental multidimensional scaling method for database visualization. In Proc SPIE’99, pp. 149–158.
Bentrem, F. W. (2010). A Q-Ising model application for linear-time image segmentation. Central European Journal of Physics, 8(5), 689–698.
Besag, J. E. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B (Methodological), 36, 192–225.
Besag, J. E. (1975). Statistical analysis of non-lattice systems. The Statistician, 24, 179–195.
Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer.
Breitbart, Y., Garofalakis, M., Jai, B., Martin, C., Rastogi, R., & Silbershatz, A. (2004). Topology discovery in heterogeneous IP networks: The NetInventory system. IEEE/ACM Transactions on Networking, 12(3), 401–414.
Bromberg, F., Margaritis, D., & Honavar, V. (2006). Efficient Markov network structure discovery using independence tests. In Proceedings of SIAM international conference on data mining, pp. 141–152.
Bromberg, F., & Margaritis, D. (2007). Efficient and robust independence-based Markov network structure discovery. In Proc IJCAI.
Bromberg, F., & Margaritis, D. (2009). Improving the reliability of causal discovery from small data sets using argumentation. JMLR, 10, 301–340.
Brown, P., Cocke, J., Della Pietra, S., Della Pietra, V., Jelinek, F., Mercer, R. (1988). A statistical approach to language translation. In COLING-88, Vol. 1, pp. 71–76.
Butte, A. J., & Kohane, I. S. (2000). Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. In Pacific symposium on biocomputing, Vol. 5.
Chen, H., & Varshney, P. (2003). Mutual information-based CT-MR brain image registration using generalized partial volume joint histogram estimation. IEEE Transactions on Medical Imaging, 22(9), 1111–1119.
Cheng, J., Greiner, R., Kelly, J., Bell, D., & Liu, W. (2002). Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence, 137(1–2), 43–90.
Cover, T. M., & Thomas, J. A. (1991). Elements of information theory (pp. 5–21). Hoboken: Wiley.
Cressie, N. A. C. (1993). Statistics for spatial data (pp. 383–573). Hoboken: Wiley.
De Campos, L. M. (2006). A scoring function for learning Bayesian networks based on mutual information and conditional independence tests. Journal of Machine Learning Research, 7, 2149–2187.
Drees, B. L., Thorsson, V., Carter, G. W., Rives, A. W., Raymond, M. Z., Avila-Campillo, I., et al. (2005). Derivation of genetic interaction networks from quantitative phenotype data. Genome Biology, 6, R38.
Everitt, B. S., & Rabe-Hesketh, S. (1997). Kendall’s library of statistics 4: The analysis of proximity data (pp. 11–68). London: Arnold.
Friedman, N., & Koller, D. (2003). Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks. Machine Learning, 50, 95–126.
Gandhi, P., Bromberg, F., & Margaritis, D. (2008). Learning markov network structure using few independence tests. In Proceedings of SIAM international conference on data mining, pp. 680–691.
Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika, 40(1), 33–51.
Hellebrandt, M., Mathar, R., & Scheibenbogen, M. (1997). Estimating position and velocity of mobiles in a cellular radio network. IEEE Transactions on Vehicular Technology, 46(1), 65–71.
Horn, R. A., & Johnson, C. R. (1990). Norms for vectors and matrices. Matrix analysis (Ch. 5). Cambridge: Cambridge University Press.
Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Zeitschrift fũr Physik, 31, 253–258.
Kalisch, M., & Bühlmann, P. (2007). Robustification of the PC-algorithm for directed acyclic graphs. Journal of Computational and Graphical Statistics, 17(4), 773–789.
Kishino, H., & Waddell, P. J. (2000). Correspondence analysis of genes and tissue types and finding genetic links from microarray data. Genome Informatics, 11, 83–95.
Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1–27.
Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29, 115–129.
Lee, S.-I., Ganapahthi, V., & Koller, D. (2007). Efficient structure learning of Markov networks using \(L_{1}\)-regularization. In Advances in neural information processing systems.
Lenz, W. (1920). Beitrag zum Verständnis der magnetishen Erscheinungen in festen Körpern. Zeitschrift fũr Physik, 21, 613–615.
Li, F. (2007). Structure learning with large sparse undirected graphs and its applications. Doc. Thesis, Carnegie Mellon University, USA.
Lo, W. S., & Pelcovits, R. A. (1990). Ising model in a time-dependent magnetic field. Physical Review A, 42(12), 7471–7474.
MacKay, D. (2003). Information theory, inference and learning algorithms (pp. 357–421). Cambridge: Cambridge University Press.
Margaritis, D., & Bromberg, F. (2009). Efficient Markov network discovery using particle filter. Computational Intelligence, 25(4), 367–394.
Margaritis, D., & Thrun, S. (1999). Bayesian network induction via local neighbourhoods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 832–834.
Martín-Merino, M., & Muñoz, A. (2004). A new MDS algorithm for textual data analysis. In Proc ICONIP’04. LNCS, Vol. 3316, pp. 860–867.
Mathiassen, J., Skavhaug, A., & Bø, K. (2002). Texture similarity measure using Kullback–Leibler divergence between Gamma distributions. In A. Heyden et al. (Eds.), ECCV 2002 Part III, LNCS, Vol. 2352, pp. 133–147.
McCoy, B. M., & Wu, T. T. (2014). The two-dimensional Ising model. Courier Corporation.
Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.
Niu, C., & Grimson, E. (2006). Recovering non-overlapping network topology using far-field vehicle tracking data. In Proc ICPR’06, pp. 944–949.
Potts, R. B. (1952). Some generalized order-disorder transformations. Proceedings of the Cambridge Philosophical Society, 48, 106–109.
Press, W., Flannery, B., Teukolsky, S., & Vetterling, W. (1986). Numerical recipes: The art of scientific computation (pp. 476–481). Cambridge: Cambridge University Press.
Rajala, M. (2009). Data-based modelling and analysis of coherent networked systems with applications to mobile telecommunications networks. Doc. Thesis, Tampere University of Technology, Finland. http://dspace.cc.tut.fi/dpub/handle/123456789/6056(24.3.2016).
Rajala, M., & Ritala, R. (2006). Mutual information and multidimensional scaling as means to reconstruct network topology. In Proc SICE-ICCAS’06, pp. 1398–1403.
Rajala, M., & Ritala, R. (2006). Statistical model describing networked systems phenomena. In Proc ISCC’06, pp. 647–654.
Rajala, M., & Ritala, R.(2007). A method to estimate the graph structure for a large MRF model. In J. Marques de Sá et al. (Eds.), ICANN 2007 Part II, LNCS, Vol. 4669, pp. 836–849.
Rue, H., & Held, L. (2005). Gaussian Markov random fields: Theory and applications. Boca Raton: CRC.
Schlüter, F. (2014). A survey on independence-based Markov networks learning. Artificial Intelligence Review, 42(4), 1069–1093.
Schroeder, D.V. (1999). An introduction to thermal physics. Reading: Addison-Wesley.
Seber, G. (1984). Multivariate observations (pp. 235–256). Hoboken: Wiley.
Solé, R. V., Ferrer, R., Gonzàlez-Garcìa, I., Quer, J., & Domingo, E. (1999). Red queen dynamics, competition and critical points in a model of RNA virus quasispecies. Journal of Theoretical Biology, 198, 47–59.
Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search. Cambridge, MA: The MIT Press.
Szabó, G., & Kádár, G. (1998). Magnetic hysteresis in an Ising-like dipole–dipole model. Physical Review B, 58(9), 5584–5587.
Thompson, C. J. (1972). Mathematical statistical mechanics. Princeton: Princeton University Press.
Vanderwalle, N., Boveroux, P., Minguet, A., & Ausloos, M. (1998). The crash of October 1987 seen as a phase transition: Amplitude and universality. Physica A, 255, 201–210.
Winkler, G. (2003). Image analysis, random fields and Markov chain Monte Carlo methods (2nd ed.). Berlin: Springer.
Yang, C. N. (1952). The spontaneous magnetization of a two-dimensional Ising model. Physical Review, 85(5), 808–816.
Young, F. W. (2013). Multidimensional scaling: History, theory, and applications. Hove: Psychology Press.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rajala, M., Ritala, R. Topology estimation method for telecommunication networks. Telecommun Syst 68, 745–759 (2018). https://doi.org/10.1007/s11235-018-0422-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-018-0422-8