Skip to main content
Log in

Joint remote radio heads and baseband units pool resource scheduling for delay-aware traffic in cloud radio access networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Due to the centralized signal processing and powerful computational ability, cloud radio access networks (C-RAN) is considered as a promising technique to meet the increasing demand of high-data-rate services of the fifth generation wireless communications. This paper investigates the stochastic optimization problem of C-RAN by joint remote radio heads and baseband units pool resource scheduling to achieve the throughput utility maximization. We formulate a problem to maximize the average throughput utility while stabilizing all processing and transmission queues under the power, subcarrier and computational resources constraints. By utilizing Lyapunov optimization technique, the primal problem can be decomposed into four subproblems. Throughput utility maximization, admission control and computational resource allocation subproblems can be solved easily. For the joint power and subcarrier allocation subproblem, we utilize time-sharing and alternating approaches to obtain a feasible solution. By utilizing the results of four subproblems, a joint admission control and resource allocation (JACRA) algorithm is proposed. The simulation results are provided to show that the total average throughput of JACRA algorithm is increased by 4.02% compared with joint Hungarian and iterative waterfilling (JHIW) algorithm, but the total average backlogs of JACRA algorithm are decreased by 7.04% when the control parameter grows from 1 to 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. China Mobile. (2011). C-RAN: The road green RAN. In China Mobile Research Institute.

  2. Lin, S., Kong, L., Qian, G., Khan, M. K., Zhong, Z., Xi, J., et al. (2017). Advanced dynamic channel access strategy in spectrum sharing 5G system. IEEE Communications Magazine, 24(5), 2–8.

    Article  Google Scholar 

  3. Wang, D., Zhang, Y., Wei, H., You, X., Gao, X., & Wang, J. (2016). An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications. Science China Information Sciences, 59(8), 1–18.

    Article  Google Scholar 

  4. Li, S., Zhang, N., Lin, S., Kong, L., Katangur, A., & Khan, M. K. (2018). Joint admission control and resource allocation in edge computing for internet of things. IEEE Network, 32(1), 72–79.

    Article  Google Scholar 

  5. Peng, M., Sun, Y., Li, X., Mao, Z., & Wang, C. (2016). Recent advances in cloud radio access networks: System architectures, key techniques, and open issues. IEEE Communications Surveys & Tutorials, 18(3), 2282–2308.

    Article  Google Scholar 

  6. Checko, A., Christiansen, H. L., Yan, Y., & Scolari, L. (2015). Cloud RAN for mobile networks—A technology overview. IEEE Communications Surveys & Tutorials, 17(1), 405–426.

    Article  Google Scholar 

  7. Zhou, H., Zhang, N., Bi, Y., Yu, Q., Shen, X. S., & Shan, D. (2017). TV white space enabled connected vehicle networks: Challenges and solutions. IEEE Network, PP(99), 12–19.

    Google Scholar 

  8. Li, Y., Liu, J., Cao, B., & Wang, C. (2018). Joint optimization of radio and virtual machine resources with uncertain user demands in mobile cloud computing. IEEE Transactions on Multimedia, PP(99), 1–1.

    Google Scholar 

  9. Alnoman, A., & Anpalagan, A. (2017). Towards the fulfillment of 5G network requirements: Technologies and challenges. Telecommunication Systems, 65(1), 101–116.

    Article  Google Scholar 

  10. Musavian, L., & Le-Ngoc, T. (2013). Energy-efficient power allocation for delay-constrained systems. In 2012 IEEE global communications conference (GLOBECOM) (pp. 3554–3559).

  11. Zhou, H., Xu, W., Bi, Y., Chen, J., Yu, Q., & Shen, X. S. (2018). Toward 5G spectrum sharing for immersive-experience-driven vehicular communications. IEEE Wireless Communications, 24(6), 30–37.

    Article  Google Scholar 

  12. Kong, L., Lin, S., Xie, W., Qiao, X., Jin, X., Zeng, P., et al. (2016). Adaptive barrier coverage using software defined sensor networks. IEEE Sensors Journal, 16(20), 7364–7372.

    Article  Google Scholar 

  13. Tang, J., Tay, W. P., & Quek, T. Q. S. (2015). Cross-layer resource allocation with elastic service scaling in cloud radio access network. IEEE Transactions on Wireless Communications, 14(9), 5068–5081.

    Article  Google Scholar 

  14. Wang, W., Lau, V. K., & Peng, M. (2017). Delay-aware uplink fronthaul allocation in cloud radio access networks. IEEE Transactions on Wireless Communications, 16(7), 4275–4287.

    Article  Google Scholar 

  15. Mo, Y., Peng, M., Xiang, H., Sun, Y., & Ji, X. (2017). Resource allocation in cloud radio access networks with device-to-device communications. IEEE Access, 5, 1250–1262.

    Article  Google Scholar 

  16. Li, J., Wu, J., Peng, M., Wang, W., & Lau, V. K. (2015). Queue-aware joint remote radio head activation and beamforming for green cloud radio access networks. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6).

  17. Arfaoui, A., Hamouda, S., Nuaymi, L., & Godlewski, P. (2017). Minimization of delays in multi-service Cloud-RAN BBU pools. In 2017 13th international wireless communications and mobile computing conference (IWCMC) (pp. 1846–1850).

  18. Carapellese, N., Tornatore, M., & Pattavina, A. (2013). Placement of baseband units (BBUs) over fixed/mobile converged multi-stage WDM-PONs. In 2013 17th international conference on optical networking design and modeling (ONDM) (pp. 246–251).

  19. Ren, Y., Wang, Y., Xu, G., & Huang, Q. (2014). A compression method for LTE—A signals transported in radio access networks. In 2014 21st international conference on telecommunications (ICT) (pp. 293–297).

  20. Gao, H., Wang, M., & Lv, T. (2017). Energy efficiency and spectrum efficiency tradeoff in the d2d-enabled hetnet. IEEE Transactions on Vehicular Technology, PP(99), 1–1.

    Google Scholar 

  21. Li, S., Zhu, G., Lin, S., Gao, Q., Xiong, L., Xie, W., et al. (2017). Energy efficiency and capacity tradeoff in cloud radio access network of high speed railways. Mobile Information Systems, 2017, 5816862.

    Google Scholar 

  22. Lin, S., Kong, L., He, L., Guan, K., Ai, B., Zhong, Z., et al. (2015). Finite-state markov modeling for high-speed railway fading channels. IEEE Antennas & Wireless Propagation Letters, 14, 954–957.

    Article  Google Scholar 

  23. Xu, S., Zhu, G., Shen, C., Lei, Y., & Zhong, Z. (2014). Analysis and optimization of resource control in high-speed railway wireless networks. Mathematical Problems in Engineering, 2014, 781654.

    Google Scholar 

  24. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  25. Neely, M. J. (2010). Stochastic network optimization with application to communication and queueing systems. San Rafael: Morgan and Claypool Publishers.

    Book  Google Scholar 

  26. Li, J., Peng, M., Yu, Y., & Ding, Z. (2016). Energy-efficient joint congestion control and resource optimization in heterogeneous cloud radio access networks. IEEE Transactions on Vehicular Technology, 65(12), 9873–9887.

  27. Gao, H., Yuen, C., Ren, Y., Lv, T., & Long, W. (2015). Distributed user scheduling for MIMO-Y channel. IEEE Transactions on Wireless Communications, 14(12), 7123–7139.

    Article  Google Scholar 

  28. Yu, W., & Lui, R. (2006). Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Transactions on Communications, 54(7), 1310–1322.

    Article  Google Scholar 

  29. Zhou, H., Cheng, N., Lu, N., Gui, L., Zhang, D., & Yu, Q. (2016). WhiteFi infostation: Engineering vehicular media streaming with geolocation database. IEEE Journal on Selected Areas in Communications, 34(8), 2260–2274.

    Article  Google Scholar 

  30. Hoshyar, R., Shariat, M., & Tafazolli, R. (2010). Subcarrier and power allocation with multiple power constraints in OFDMA systems. IEEE Communications Letters, 14(7), 644–646.

    Article  Google Scholar 

  31. Li, S., Zhu, G., Lin, S., Gao, Q., Xu, S., Xiong, L., & Zhong, Z. (2016). Resource allocation with multiple QoS constraints in OFDMA-based cloud radio access network. In International conference on communicatins and networking in China (CHINACOM) (pp. 453–464).

  32. Wang, F., & Chen, W. (2016). Joint subcarrier and power allocation for downlink transmission in OFDMA heterogeneous networks. In 2016 83rd vehicular technology conference (VTC Spring) (pp. 1–6).

  33. Zhou, H., Cheng, N., Yu, Q., Shen, X. S., Shan, D., & Bai, F. (2016). Toward multi-radio vehicular data piping for dynamic DSRC/TVWS spectrum sharing. IEEE Journal on Selected Areas in Communications, 34(10), 2575–2588.

    Article  Google Scholar 

  34. Ma, X., Dong, H., Liu, X., Jia, L., Xie, G., & Bian, Z. (2017). An optimal communications protocol for maximizing lifetime of railway infrastructure wireless monitoring network. IEEE Transactions on Industrial Informatics, PP(99), 1–1.

    Google Scholar 

  35. Xiong, F., Liu, Y., Wang, L., & Wang, X. (2017). Analysis and application of opinion model with multiple topic interactions. Chaos, 27(8), 083113.

    Article  Google Scholar 

  36. Xiong, F., Liu, Y., & Cheng, J. (2017). Modeling and predicting opinion formation with trust propagation in online social networks. Communications in Nonlinear Science & Numerical Simulation, 44, 513–524.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Educational Commission of Gansu Province of China (No. 2017B-33), Natural Science Foundation of Gansu Province (No. 17JR5RA159), National Civil Committee & Key Laboratory of Ministry of Education of China National Language and Information Technology (No. KFJJ201612), Public Security Audio-visual Technology Innovation Teaching Team of Gansu Political Science and Law Institute, Characteristic Discipline of Evidence Science in Gansu Province, and Key Discipline of Public Security and Technology of Gansu Political Science and Law Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichao Li.

Appendix

Appendix

1.1 A

Proof (Proof of Lemma 1)

Let \(U_{1}^{*}\) and \(U_{2}^{*}\) be the optimal throughput utility value of problem (P1) and problem (P2), respectively. In order to prove problem (P1) and problem (P2) are equivalent. We prove \(U_{1}^{*}\ge U_{2}^{*}\) firstly, and then we prove \(U_{1}^{*}\le U_{2}^{*}\).

Firstly, we prove \(U_{1}^{*}\ge U_{2}^{*}\). We assume \(\gamma _{m}^{*}(t)\), \(r_{m}^{*}(t)\), \(\mu _{m}^{*}(t)\), \(p_{lmi}^{*}(t)\) are the optimal solutions to achieve \(U_{2}^{*}\) in problem (P2), and we denote them as \(\rho _{2}^{*}(t)\). Because \(U(\cdot )\) is a concave function, based on Jensen’s inequality, we can get

$$\begin{aligned} \sum _{n\in M} U(\overline{\gamma _{m}^{*}})\ge \sum _{n\in M}\overline{U(\gamma _{m}^{*})}=U_{2}^{*}. \end{aligned}$$
(37)

In addition, because \(r_{m}^{*}\ge \gamma _{m}^{*}\) and \(U(\cdot )\) is nondecreasing, we can get

$$\begin{aligned} \sum _{n\in M} U(\overline{r_{m}^{*}})\ge \sum _{n\in M}U(\overline{\gamma _{m}^{*}}). \end{aligned}$$
(38)

Because the constraints of problem (P2) include all the constraints of problem (P1), \(\rho _{2}^{*}(t)\) is a feasible solution for problem (P1), and the utility value is not larger than \(U_{1}^{*}\). Therefore, we can get

$$\begin{aligned} U_{1}^{*}\ge \sum _{n\in M} U(\overline{r_{m}^{*}})\ge U_{2}^{*}. \end{aligned}$$
(39)

Secondly, we prove \(U_{1}^{*}\le U_{2}^{*}\). We assume \(r_{m}^{*}(t)\), \(\mu _{m}^{*}(t)\), \(p_{lmi}^{*}(t)\) are the optimal solutions to achieve \(U_{1}^{*}\) in problem (P1), and we denote them as \(\rho _{1}^{*}(t)\). Because \(\rho _{1}^{*}(t)\) satisfies the constraints (6b)–(6i) in problem (P1), it also satisfies the constraint (8d) in problem (P2). We set \(\gamma _{m}(t)=\overline{r_{m}^{*}}\) which can satisfy the constraints (8b) and (8c) in problem (P2). Therefore, \(\gamma _{m}(t)\) and \(\rho _{1}^{*}(t)\) are the feasible solution of problem (P2). By the definition, we can get \(\overline{U(\gamma _{m})}=\lim _{t\rightarrow \infty }(\frac{1}{t})\sum _{\tau =0}^{t-1}U(\gamma _{m}(\tau ))=\lim _{t\rightarrow \infty }(\frac{1}{t})\sum _{\tau =0}^{t-1}U(\overline{r_{m}^{*}})=U(\overline{r_{m}^{*}})\). Thus, we can get

$$\begin{aligned} U_{2}^{*}\ge \sum _{m\in \mathcal {M}}\overline{U(\gamma _{m})}=\sum _{m\in \mathcal {M}}U(\overline{r_{m}^{*}})=U_{1}^{*}. \end{aligned}$$
(40)

Based on Eqs. (39) and (40), we can get \(U_{1}^{*}=U_{2}^{*}\). Therefore, problem (P1) and problem (P2) are equivalent.

Therefore, Lemma 1 is proved. \(\square \)

1.2 B

Proof (Proof of Lemma 2)

By leveraging the fact that \((\max [a-b,0]+c)^{2}\le a^{2}+b^{2}+c^{2}-2a(b-c), \forall a, b, c\ge 0\) [33]. For Eq. (3), we have

$$\begin{aligned} \begin{aligned}&H_{m}(t+1)^{2}-H_{m}(t)^{2}=(\max [H_{m}(t)-\mu _{m}(t),0]+r_{m}(t))^{2}\\&-H_{m}(t)^{2}\le [\mu _{m}(t)^{2}+r_{m}(t)^{2}]+2H_{m}(t)[r_{m}(t)-\mu _{m}(t)]. \end{aligned} \end{aligned}$$
(41)

Similarly, for the queue \(Q_{m}(t)\) and virtual queue \(Z_{m}(t)\), we can get

$$\begin{aligned} Q_{m}(t+1)^{2}-Q_{m}(t)^{2}\le & {} [\mu _{m}(t)^{2}+c_{m}(t)^{2}]\nonumber \\&+\,\,2Q_{m}(t)[\mu _{m}(t)-c_{m}(t)]. \end{aligned}$$
(42)
$$\begin{aligned} Z_{m}(t+1)^{2}-Z_{m}(t)^{2}\le & {} [\gamma _{m}(t)^{2}+r_{m}(t)^{2}]\nonumber \\&+\,\,2Z_{m}(t)[\gamma _{m}(t)-r_{m}(t)]. \end{aligned}$$
(43)

Based on Eqs. (11), (41), (42) and (43), \(\varDelta (\varvec{\Theta }(t))\) can be represented as

$$\begin{aligned} \begin{aligned}&\varDelta (\varvec{\Theta }(t))= \mathbf {E}\left[ \frac{1}{2}\sum _{m\in \mathcal {M}}[H_{m}(t+1)^{2}-H_{m}(t)^{2}\right. \\&\qquad \left. +\,\,Q_{m}(t+1)^{2}-Q_{m}(t)^{2}+Z_{m}(t+1)^{2}-Z_{m}(t)^{2}]\mid \varvec{\Theta }(t) \right] \\&\quad \le \mathbf {E}\left[ \frac{1}{2}\sum _{m\in \mathcal {M}}[\mu _{m}(t)^{2}+r_{m}(t)^{2}+\mu _{m}(t)^{2}+c_{m}(t)^{2}\right. \\&\qquad \left. +\,\,\gamma _{m}(t)^{2}+r_{m}(t)^{2}]\mid \varvec{\Theta }(t)\right] \\&\qquad +\,\,\mathbf {E}\left[ \sum _{m\in \mathcal {M}}[H_{m}(t)[r_{m}(t)-\mu _{m}(t)]+Q_{m}(t)[\mu _{m}(t)-c_{m}(t)] \right. \\&\qquad \left. +\,\,Z_{m}(t)[\gamma _{m}(t)-r_{m}(t)]]\mid \varvec{\Theta }(t)\right] \\&\quad \le D+\mathbf {E}[G(t)\mid \varvec{\Theta }(t)]. \end{aligned} \end{aligned}$$
(44)

Based on \(r_{m}(t)\le B_{m}\), the constraints (6e), (6f), (6g) in problem (P1) and the constraint (8c) in problem (P2), we have

$$\begin{aligned} \begin{aligned}&\mathbf {E}\left[ \frac{1}{2}\sum _{m\in \mathcal {M}}[2r_{m}(t)^{2}+\gamma _{m}(t)^{2}+2\mu _{m}(t)^{2}+ c_{m}(t)^{2}]\mid \varvec{\Theta }(t)\right] \\&\quad \le \mathbf {E}\left[ \frac{1}{2}\sum _{m\in \mathcal {M}}[3B_{m}^{2}+2\min (\mu _{total}, C_{f})^{2}+C_{f}^{2}]\mid \varvec{\Theta }(t)\right] \\&\quad =\frac{1}{2}\sum _{m\in \mathcal {M}}[3B_{m}^{2}+2\min (\mu _{total}, C_{f})^{2}+C_{f}^{2}]=D. \end{aligned} \end{aligned}$$
(45)

Therefore, Lemma 2 is proved. \(\square \)

1.3 C

Proof (Proof of Lemma 3)

For a fixed allocated time-share value, problem (P3-1) becomes a convex problem. We can use Lagrange dual method to solve this problem [34]. The Lagrange function of objective function can be written as

$$\begin{aligned} \begin{aligned} L(p_{mi},\lambda _{l_{m}})&= -\sum _{m\in \mathcal {M}}\sum _{i\in \mathcal {I}}Q_{m}W_{0}\log _{2}(1+p_{mi}g_{mi})\\&\quad +\lambda _{l_{m}} \left( \sum _{m\in \mathcal {M}_{l}}\sum _{i\in \mathcal {I}}p_{mi}-P_{l}\right) . \end{aligned} \end{aligned}$$
(46)

To maximize the Lagrange function, we only need to maximize the power allocation pointwise.

$$\begin{aligned} L(p_{mi},\lambda _{l_{m}}) = -\,\,Q_{m}W_{0}\log _{2}(1+p_{mi}g_{mi})+\lambda _{l_{m}} (p_{mi}-P_{l}). \end{aligned}$$
(47)

And then, use the Lagrange dual method differentiating \(L(p_{mi},\lambda _{l_{m}})\) with respect to \(p_{mi}\), and set the result to zero

$$\begin{aligned} \frac{\partial L(p_{mi},\lambda _{l_{m}})}{\partial p_{mi}} = 0, \end{aligned}$$
(48)

we can get \(p_{mi}\)

$$\begin{aligned} p_{mi} = \frac{Q_{m}W_{0}}{\lambda _{l_{m}}\ln 2}-\frac{1}{g_{mi}}. \end{aligned}$$
(49)

Because the value of power can not be negative, the power allocation is

$$\begin{aligned} p_{mi} = \left( \frac{Q_{m}W_{0}}{\lambda _{l_{m}}\ln 2}-\frac{1}{g_{mi}},0\right) ^{+},~~x^{+} =\max (x,0). \end{aligned}$$
(50)

Therefore, Lemma 3 is proved. \(\square \)

1.4 D

Proof (Proof of Lemma 4)

For a fixed allocated power, we can use Lagrange dual method to solve Eq. (30). The Lagrange function of objective function can be written as

$$\begin{aligned} \begin{aligned} L(\alpha _{mi},\beta _{i})&=-\sum _{m\in \mathcal {M}}\sum _{i\in \mathcal {I}}Q_{m}\alpha _{mi}W_{0}\log _{2}(1+p_{mi}g_{mi})\\&\quad +\beta _{i}\left( \sum _{m\in \mathcal {M}}\alpha _{mi}-1\right) . \end{aligned} \end{aligned}$$
(51)

To maximize the Lagrange function, we only need to maximize the power allocation pointwise.

$$\begin{aligned} \begin{aligned} L(\alpha _{mi},\beta _{i})&=-\,\,Q_{m}\alpha _{mi}W_{0}\log _{2}(1+p_{mi}g_{mi})\\&\quad +\beta _{i}(\alpha _{mi}-1). \end{aligned} \end{aligned}$$
(52)

And then, use the Lagrange dual method differentiating \(L(\alpha _{mi},\beta _{i})\) with respect to \(\alpha _{mi}\), and set the result to zero

$$\begin{aligned}&\frac{\partial (\alpha _{mi},\beta _{i})}{\partial \alpha _{mi}} = 0, \end{aligned}$$
(53)
$$\begin{aligned}&-\,\,Q_{m}W_{0}\left( \log _{2}(1+\frac{q_{mi}g_{mi}}{\alpha _{mi}})-\frac{\frac{q_{mi}g_{mi}}{\alpha _{mi}}}{ln2(1+\frac{q_{mi}g_{mi}}{\alpha _{mi}})}\right) \nonumber \\&\qquad +\,\,\beta _{i}=0. \end{aligned}$$
(54)

Therefore,

$$\begin{aligned} \begin{aligned}&u_{m}(y) = Q_{m}W_{0}\left( \log _{2}(1+y)-\frac{y}{\ln 2(1+y)}\right) = \beta _{i},\\&y = \frac{q_{mi}g_{mi}}{\alpha _{mi}}. \end{aligned} \end{aligned}$$
(55)

Therefore, Lemma 4 is proved. \(\square \)

1.5 E

Proof (Proof of Lemma 5)

Based on Eq. (12), we can get

$$\begin{aligned} \begin{aligned}&\varDelta (\varvec{\Theta }(t))-V\mathbf {E}\left[ \sum _{m\in \mathcal {M}}U_{m}(\gamma _{m}(t))\mid \varvec{\Theta }(t)\right] \\&\quad \le D- V\mathbf {E}\left[ \sum _{m\in \mathcal {M}}U_{m}(\gamma _{m}(t))\mid \varvec{\Theta }(t)\right] \\&\qquad +\mathbf {E}\left[ \sum _{m\in \mathcal {M}}[H_{m}(t)[r_{m}(t)-\mu _{m}(t)]+Q_{m}(t)[\mu _{m}(t)\right. \\&\qquad \left. -\,\,c_{m}(t)]+Z_{m}(t)[\gamma _{m}(t)-r_{m}(t)]\mid \varvec{\Theta }(t)\right] . \end{aligned} \end{aligned}$$
(56)

Equation (12) is to minimize the right hand of Eq. (56) when the \(\varvec{\Theta }(t)\) is fixed. Therefore, for arbitrary feasible solution \(r_{m}^{*}(t)\), \(\gamma _{m}^{*}(t)\), \(\mu _{m}^{*}(t)\), \(p_{mi}^{*}(t)\) and \(\alpha _{mi}^{*}(t)\) should satisfy the following inequality

$$\begin{aligned} \begin{aligned}&\varDelta (\varvec{\Theta }(t))-V\mathbf {E}\left[ \sum _{m\in \mathcal {M}}U_{m}(\gamma _{m}(t))\mid \varvec{\Theta }(t)\right] \\&\quad \le D- V\mathbf {E}\left[ \sum _{m\in \mathcal {M}}U_{m}(\gamma _{m}^{*}(t))\mid \varvec{\Theta }(t)\right] \\&\qquad +\sum _{m\in \mathcal {M}}H_{m}(t)\mathbf {E}[r_{m}^{*}(t)-\mu _{m}^{*}(t)\mid \varvec{\Theta }(t)]\\&\qquad +\sum _{m\in \mathcal {M}}Q_{m}(t)\mathbf {E}[\mu _{m}^{*}(t)-c_{m}^{*}(t)\mid \varvec{\Theta }(t)]\\&\qquad +\sum _{m\in \mathcal {M}}Z_{m}(t)\mathbf {E}[\gamma _{m}^{*}(t)-r_{m}^{*}(t)\mid \varvec{\Theta }(t)]. \end{aligned} \end{aligned}$$
(57)

We can get if problem (P1) can be solved, there must exist a feasible control strategy to satisfy the following inequality for arbitrary \(\delta >0\) [25],

$$\begin{aligned} \begin{aligned}&\mathbf {E}\left[ \sum _{m\in \mathcal {M}}U_{m}(\gamma _{m}^{*}(t))\right] \ge U_{1}^{*}-\delta ,\\&\mathbf {E}[r_{m}^{*}(t)-\mu _{m}^{*}(t)]\le \delta ,\\&\mathbf {E}[\mu _{m}^{*}(t)-c_{m}^{*}(t)]\le \delta ,\\&\mathbf {E}[\gamma _{m}^{*}(t)-r_{m}^{*}(t)]\le \delta , \end{aligned} \end{aligned}$$
(58)

where \(U_{1}^{*}\) is the optimal value of problem (P1). Let \(\delta \rightarrow 0\), we substitute (57) into (56), we can get

$$\begin{aligned} \varDelta (\varvec{\Theta }(t))-V\mathbf {E}\left[ \sum _{m\in \mathcal {M}}U_{m}(\gamma _{m}(t))\mid \varvec{\Theta }(t)\right] \le D-VU_{1}^{*}. \end{aligned}$$
(59)

We take the expectation of Eq. (59), and based on the fact \(L(\varvec{\Theta }(t))\ge 0\), we can get

$$\begin{aligned} U_{1}^{*}-\frac{1}{T}\sum _{t\in T}\mathbf {E}\left[ \sum _{m\in \mathcal {M}}U_{m}(\gamma _{m}(t))\right] \le \frac{D}{V}+\frac{\mathbf {E}[L(\varvec{\Theta }(0))]}{VT}. \end{aligned}$$
(60)

We take \(T\rightarrow \infty \) for Eq. (60), we can get

$$\begin{aligned} U_{1}^{*}-\sum _{m=1}^{M}\overline{U_{m}(\gamma _{m})}\le \mathcal {O}(1/V). \end{aligned}$$
(61)

Therefore, Lemma 5 is proved. \(\square \)

1.6 F

Proof (Proof of Lemma 6)

Based on Eq. (59), we can get

$$\begin{aligned} \varDelta (\Theta (t))\le D+V\left[ \mathbf {E}\left[ \sum _{m\in \mathcal {M}}U_{m}(\gamma _{m}(t))\mid \varvec{\Theta }(t)\right] -U_{1}^{*}\right] . \end{aligned}$$
(62)

Based on the Lyapunov theory, Eq. (62) means all the queues are rate stable and \(\frac{1}{T}\sum _{t\in \mathcal {T}} \mathbf {E}[\gamma _{m}^{*}(t)-r_{m}^{*}(t)]\le 0 \). On the Slater condition, if there is a feasible control strategy \(\nu \), which can satisfy \(\mathbf {E}[r_{m}^{\nu }(t)-\mu _{m}^{\nu }(t)]\le -\varepsilon \), \(\mathbf {E}[\mu _{m}^{\nu }(t)-c_{m}^{\nu }(t)]\le -\varepsilon \) and \(\mathbf {E}[\sum _{m\in \mathcal {M}}U_{m}(\gamma _{m}^{\nu }(t))]=U_{\varepsilon }\).[35] Based on Eq. (57), we can get

$$\begin{aligned} \begin{aligned} \varDelta (\varvec{\Theta }(t))&\le D+V\left[ \mathbf {E}\left[ \sum _{m\in \mathcal {M}}U_{m}(\gamma _{m}(t))\mid \varvec{\Theta }(t)\right] \right. \\&\quad \left. -U_{\varepsilon }\right] -\varepsilon \left( \sum _{m\in \mathcal {M}}H_{m}(t)+\sum _{m\in \mathcal {M}}Q_{m}(t)\right) . \end{aligned} \end{aligned}$$
(63)

We take the expectation of Eq. (63), we can get

$$\begin{aligned} \begin{aligned}&\frac{1}{T}\sum _{t\in \mathcal {T}}\sum _{m\in \mathcal {M}}(\mathbf {E}[H_{m}(t)]+\mathbf {E}[Q_{m}(t)])\le \frac{D}{\varepsilon }\\&\quad +\frac{V}{\varepsilon }\left[ \frac{1}{T}\sum _{t\in \mathcal {T}}\mathbf {E}\left[ \sum _{m\in \mathcal {M}}U_{m}(\gamma _{m}(t))\right] -U_{\varepsilon }\right] +\frac{\mathbf {E}[L(\varvec{\Theta }(0))]}{\varepsilon T}. \end{aligned} \end{aligned}$$
(64)

Due to \(\frac{1}{T}\sum _{t\in \mathcal {T}}\mathbf {E}[\sum _{m\in \mathcal {M}}U_{m}(\gamma _{m}(t))]\le U_{1}^{*}\), we take \(T\rightarrow \infty \) for Eq. (64), we can get

$$\begin{aligned} \begin{aligned}&\sum _{m\in \mathcal {M}}\overline{H_{m}}+\sum _{m\in \mathcal {M}}\overline{Q_{m}}\\&\quad =\lim _{T\rightarrow \infty }\sum _{t\in \mathcal {T}}\sum _{m\in \mathcal {M}}(\mathbf {E}[H_{m}(t)]+\mathbf {E}[Q_{m}(t)])\\&\quad \le \frac{D}{\varepsilon }+\frac{U_{1}^{*}-U_{\varepsilon }}{\varepsilon }V. \end{aligned} \end{aligned}$$
(65)

Therefore, Lemma 6 is proved. \(\square \)

1.7 G

Proof (Proof of Lemma 7)

Based on Eq. (7), we can get \(Z_{m}(t)\ge 0\). And then, we utilize induction to prove \(Z_{m}(t)\le V\omega _{m}+B_{m}\). We assume that \(Z_{m}(t)\le V\omega _{m}+B_{m}\) at time slot t, then we prove it also holds at time slot \(t+1\).

Firstly, for the case \(Z_{m}(t)\le V\omega _{m}\), from Eq. (7), we can see that this queue can increase by at most \(B_{m}\) at each time slot, therefore, we have \(Z_{m}(t)\le V\omega _{m}+B_{m}\).

Secondly, we consider \(V\omega _{m}<Z_{m}(t)\le V\omega _{m}+B_{m}\). At each time slot, BBU pool decides \(\gamma _{m}(t)\) to maximize the following expression

$$\begin{aligned} VU(\gamma _{m}(t))-Z_{m}(t)\gamma _{m}(t). \end{aligned}$$
(66)

Based on the property of the maximum derivative, for any \(\gamma _{m}(t)\ge 0\), we can get

$$\begin{aligned} \begin{aligned}&VU(\gamma _{m}(t))-Z_{m}(t)\gamma _{m}(t)\le VU(0)+V\omega _{m}\gamma _{m}(t)\\&\qquad -Z_{m}(t)\gamma _{m}(t)=VU(0)+\gamma _{m}(t)[V\omega _{m}-Z_{m}(t)]\\&\quad \le VU(0). \end{aligned} \end{aligned}$$
(67)

Equation (67) holds if and only if \(\gamma _{m}(t)=0\) [36]. Then the algorithm will choose \(\gamma _{m}(t)=0\) to maximize the expression (66), we can get

$$\begin{aligned} Z_{m}(t+1)=\max [Z_{m}(t)-r_{m}(t),0]\le Z_{m}(t)\le V\omega _{m}+B_{m}. \end{aligned}$$
(68)

\(Z_{m}(t+1)\le V\omega _{m}+B_{m}\) is satisfied for these two cases. Therefore, Lemma 7 is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, Q., Kou, W. et al. Joint remote radio heads and baseband units pool resource scheduling for delay-aware traffic in cloud radio access networks. Telecommun Syst 71, 77–91 (2019). https://doi.org/10.1007/s11235-018-0506-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-0506-5

Keywords

Navigation