Skip to main content
Log in

Joint impacts of hardware impairments, imperfect CSIs, and interference constraints on underlay cooperative cognitive networks with reactive relay selection

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate joint impacts of hardware impairments, imperfect channel state information (CSI) and interference constraints at secondary users in an underlay decode-and-forward cognitive network with multiple primary receivers, called as JIC protocol. A best secondary relay is derived from the reactive relay selection which maximizes signal-to-interference-and-distortion-and-noise ratios from a candidates relay set to a secondary destination over Rayleigh fading channels. The exact and asymptotic closed-form outage probability expressions are obtained to evaluate the system performance of the JIC protocol, and then are verified by the Monte Carlo simulations. Contributions show performance degradation of the JIC protocol due to the hardware impairments, the imperfect CSIs, and the interference constraints, and the significant performance improvement with respect to optimal impairment levels and optimal relay locations as well as the increase in the number of the secondary relays. In addition, insightful discussions with the conventional direct transmission are provided. Finally, the exact and asymptotic closed-form expressions are valid to the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cabric, D., ODonnell, I. D., Chen, M. S.-W., & Brodersen, R. W. (2006). Spectrum sharing radios. IEEE Circuits and Systems Magazine, 6(2), 30–45.

    Article  Google Scholar 

  2. Jemin, L., Hano, W., Andrews, J. G., & Daesik, H. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.

    Article  Google Scholar 

  3. Duy, T. T., & Kong, H. Y. (2012). Exact outage probability of cognitive two-way relaying scheme with opportunistic relay selection under interference constraint. IET Communications, 6(16), 2750–2759.

    Article  Google Scholar 

  4. Ho-Van, Khuong. (2015). Outage analysis in cooperative cognitive networks with opportunistic relay selection under imperfect channel information. AEU-International Journal of Electronics and Communications, 69(11), 1700–1708.

    Article  Google Scholar 

  5. Sharma, P. K., & Upadhyay, P. K. (2016). Cognitive relaying with transceiver hardware impairments under interference constraints. IEEE Communications Letters, 20(4), 820–823.

    Article  Google Scholar 

  6. Duy, T. T., & Son, P. N. (2017). A novel adaptive spectrum access protocol in cognitive radio with primary multicast network, secondary user selection and hard-ware impairments. Telecommunication Systems, 65(3), 525–538.

    Article  Google Scholar 

  7. Ho-Van, Khuong. (2015). Exact outage analysis of underlay cooperative cognitive networks with reactive relay selection under imperfect channel information. Wireless Personal Communications, 84(1), 565–585.

    Article  Google Scholar 

  8. Yang, L., Chen, J., Kuo, Y., & Zhang, H. (2014). Outage performance of DF-based cooperative multicast in spectrum-sharing cognitive relay networks. IEEE Communications Letters, 18(7), 1250–1253.

    Article  Google Scholar 

  9. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.

    Article  Google Scholar 

  10. Hussain, N., Ziri-Castro, K., Jayalath, D., & Arafah, M. (2017). Decode-to-Cooperate: A sequential alamouti-coded cooperation strategy in dual-hop wireless relay networks. Telecommunication Systems, 64(2), 355–366.

    Article  Google Scholar 

  11. Yang, Z., Ding, Z., Fan, P., & Al-Dhahir, N. (2017). The impact of power allocation on cooperative non-orthogonal multiple access networks with SWIPT. IEEE Transactions on Wireless Communications, 16(7), 4332–4343.

    Article  Google Scholar 

  12. BenMimoune, A., Khasawneh, F. A., Rong, B., & Kadoch, M. (2017). Dynamic joint resource allocation and relay selection for 5G multi-hop relay systems. Telecommunication Systems, 66(2), 283–294.

    Article  Google Scholar 

  13. Duy, T. T., Duong, T. Q., da Costa, D. B., Bao, V. N. Q., & Elkashlan, M. (2015). Proactive relay selection with joint impact of hardware impairment and co-channel interference. IEEE Transactions on Communications, 63(5), 1594–1606.

    Article  Google Scholar 

  14. Hong, J. P., Hong, B., Ban, T. W., & Choi, W. (2012). On the cooperative diversity gain in underlay cognitive radio systems. IEEE Transactions on Communications, 60(1), 209–219.

    Article  Google Scholar 

  15. Yan, Z., Zhang, X., & Wang, W. (2011). Exact outage performance of cognitive relay networks with maximum transmit power limits. IEEE Communications Letters, 15(12), 1317–1319.

    Article  Google Scholar 

  16. Bao, V. N. Q., & Duong, T. Q. (2012). Exact outage probability of cognitive underlay DF relay networks with best relay selection. IEICE Transactions on Communications, E95–B(6), 2169–2173.

    Article  Google Scholar 

  17. Yang, L., Chen, J., Jiang, H., Vorobyov, S. A., & Zhang, H. (2017). Optimal relay selection for secure cooperative communications with an adaptive eavesdropper. IEEE Transactions on Wireless Communications, 16(1), 26–42.

    Article  Google Scholar 

  18. Pei, L., Zhifeng, T., Zinan, L., Erkip, E., & Panwar, S. (2006). Cooperative wireless communications: A cross-layer approach. IEEE on Wireless Communications, 13(4), 84–92.

    Article  Google Scholar 

  19. Ding, H., Ge, J., da Costa, D. B., & Jiang, Z. (2011). Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario. IEEE Transactions on Vehicular Technology, 60(2), 457–472.

    Article  Google Scholar 

  20. Zhang, X., Xing, J., Yan, Z., Gao, Y., & Wang, W. (2013). Outage performance study of cognitive relay networks with imperfect channel knowledge. IEEE Communications Letters, 17(1), 27–30.

    Article  Google Scholar 

  21. Ho-Van, Khuong. (2017). On the performance of maximum ratio combining in cooperative cognitive networks with proactive relay selection under channel information errors. Telecommunication Systems, 65(3), 365–376.

    Article  Google Scholar 

  22. Jaafar, W., Ohtsuki, T., Ajib, W., & Haccoun, D. (2016). Impact of the CSI on the performance of cognitive relay networks with partial relay selection. IEEE Transactions on Vehicular Technology, 65(2), 673–684.

    Article  Google Scholar 

  23. Sun, X., Xu, K., & Xu, Y. (2018). Performance analysis of multi-pair two-way amplify-and-forward relaying with imperfect CSI over Ricean fading channels. IET Communications, 12(3), 261–270.

    Article  Google Scholar 

  24. Costa, E., & Pupolin, S. (2002). m-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise. IEEE Transactions on Communications, 50(3), 462–472.

    Article  Google Scholar 

  25. Bjornson, E., Matthaiou, M., & Debbah, M. (2013). A new look at dual-hop relaying: Performance limits with hardware impairments. IEEE Transactions on Communications, 61(11), 4512–4525.

    Article  Google Scholar 

  26. Huang, H., Li, Z., Ai, B., Wang, G. & Obaidat, M. S. (2016). Impact of hardware impairment on spectrum underlay cognitive multiple relays network. In Proceedings of IEEE international conference on communications (ICC2016) (pp. 1–6).

  27. Dan Ngoc, P. T., Duy, T. T., Bao, V. N. Q. & Nhat, N. L. (2016). Security-reliability analysis for underlay cognitive radio networks with relay selection methods under impact of hardware noises. In Proceedings of international conference on advanced technologies for communications (ATC2016) (pp. 174–179).

  28. Hieu, T. D., Duy, T. T., Dung, L. T., & Choi, S. G. (2018). Performance evaluation of relay selection schemes in Beacon-assisted dual-hop cognitive radio wireless sensor networks under impact of hardware noises. Sensors, 18(6), 1–24.

    Article  Google Scholar 

  29. Yang, L., Chen, J., Ni, Q., Shi, J., & Xue, X. (2017). NOMA-enabled cooperative unicast-multicast: Design and outage analysis. IEEE Transactions on Wireless Communications, 16(2), 7870–7889.

    Article  Google Scholar 

  30. Tourki, K., Qaraqe, K. A., & Alouini, M. S. (2013). Outage analysis for underlay cognitive networks using incremental regenerative relaying. IEEE Transactions on Vehicular Technology, 62(2), 721–734.

    Article  Google Scholar 

  31. Son, P. N., Har, D., & Kong, H. Y. (2015). Smart power allocation for secrecy transmission in reciprocally cooperative spectrum sharing. IEEE Transactions on Vehicular Technology, 64(11), 5395–5400.

    Article  Google Scholar 

  32. Jang, C., & Lee, J. H. (2012). Outage analysis and optimization of DF-based multi-hop transmission for fading channels with large path-loss exponent. IEEE Transactions on Vehicular Technology, 61(9), 4183–4189.

    Article  Google Scholar 

  33. Chong, E. K. P., & Zak, S. H. (2001). An introduction to optimization (2nd ed.). Hoboken: Wiley.

    Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.04-2017.01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Ngoc Son.

Appendices

Appendices

1.1 Appendix A: Proof of Lemma 1

When \(\left( {1 - \theta {K^2}} \right) > 0\) or \(\theta < {K^{ - 2}}\), \(\Pr \left[ {\left. D \right| \theta < {K^{ - 2}}} \right] \) is changed as

$$\begin{aligned}&\Pr \left[ {\left. D \right| \theta< {K^{ - 2}}} \right] \nonumber \\&\quad = \Pr \left[ {\underbrace{\,\mathop {\max }\limits _{u = n + 1,n + 2,\ldots ,N} {g_{SS,S{R_u}}}}_U } \right. \nonumber \\&\qquad \left. < {\underbrace{\upsilon \left( {\theta ,{\lambda _1}} \right) + \tau \left( \theta \right) {\psi _{SS}}}_\Phi \le \underbrace{\mathop {\min }\limits _{v = 1,2,\ldots ,n} {g_{SS,S{R_v}}}}_V} \right] \nonumber \\&\quad = \int \limits _{\upsilon \left( {\theta ,{\lambda _1}} \right) }^\infty {{f_\Phi }\left( x \right) \times {F_U}\left( x \right) \times \left\{ {1 - {F_V}\left( x \right) } \right\} dx} \end{aligned}$$
(A.1)

where \({f_\Phi }\left( x \right) \) is the pdf of the RV \(\Phi \), and \({F_U}\left( x \right) \) and \({F_V}\left( x \right) \) are the CDFs of the RVs U and V, respectively.

The CDF \({F_U}\left( x \right) \) is manipulated and obtained as

$$\begin{aligned}&{F_U}(x) \nonumber \\&\quad = \Pr \left[ {U< x} \right] = \Pr \left[ {\mathop {\max }\limits _{u = n + 1,n + 2,\ldots ,N} {g_{SS,S{R_u}}}< x} \right] \nonumber \\&\quad = \prod \limits _{u = n + 1}^N {\Pr \left[ {{g_{SS,S{R_u}}} < x} \right] } = \prod \limits _{u = n + 1}^N {{F_{{g_{SS,S{R_u}}}}}\left( x \right) } \nonumber \\&\quad = {\left( {1 - {e^{{{ - x} / {{\lambda _{sr}}}}}}} \right) ^{N - n}} = \sum \limits _{p = 0}^{N - n} {\left( {\begin{array}{*{20}{c}} p\\ {N - n} \end{array}} \right) {{\left( { - 1} \right) }^p} \times {e^{{{ - px} / {{\lambda _{sr}}}}}}} \end{aligned}$$
(A.2)

Similarly, the CDF \({F_V}\left( x \right) \) is also obtained as

$$\begin{aligned}&{F_V}(x)\nonumber \\&\quad = \Pr \left[ {V< x} \right] = \Pr \left[ {\mathop {\min }\limits _{v = 1,2,\ldots ,n} {g_{SS,S{R_v}}}< x} \right] \nonumber \\&\quad = 1 - \Pr \left[ {\mathop {\min }\limits _{v = 1,2,\ldots ,n} {g_{SS,S{R_v}}} \ge x} \right] \nonumber \\&\quad = 1 - \prod \limits _{v = 1}^n {\Pr \left[ {{g_{SS,S{R_v}}} \ge x} \right] } \nonumber \\&\quad = 1 - \prod \limits _{v = 1}^n {\left\{ {1 - \Pr \left[ {{g_{SS,S{R_v}}} < x} \right] } \right\} } \nonumber \\&\quad = 1 - \prod \limits _{v = 1}^n {\left\{ {1 - {F_{{g_{SS,S{R_v}}}}}\left( x \right) } \right\} } = 1 - {e^{{{ - nx} / {{\lambda _{sr}}}}}} \end{aligned}$$
(A.3)

To have \({f_\Phi }\left( x \right) \) in (A.1), firstly, the CDF of the RV \(\Phi \) is solved as

$$\begin{aligned}&{F_\Phi }(x)\nonumber \\&\quad = \Pr \left[ {\upsilon \left( {\theta ,{\lambda _{sr}}} \right) + \tau \left( \theta \right) {\psi _{SS}}< x} \right] \nonumber \\&\quad = \Pr \left[ {\upsilon \left( {\theta ,{\lambda _{sr}}} \right) + \tau \left( \theta \right) \mathop {\max }\limits _{k = 1,2,\ldots ,M} {g_{SS,P{R_k}}}< x} \right] \,\nonumber \\&\quad = \Pr \left[ {\mathop {\max }\limits _{k = 1,2,\ldots ,M} {g_{SS,P{R_k}}}< \frac{{x - \upsilon \left( {\theta ,{\lambda _{sr}}} \right) }}{{\tau \left( \theta \right) }}} \right] \nonumber \\&\quad = \left\{ \begin{array}{ll} 0,&{}\quad x - \upsilon \left( {\theta ,{\lambda _{sr}}} \right) \le 0\\ \prod \limits _{k = 1}^M {\Pr \left[ {{g_{SS,P{R_k}}} < \frac{{x - \upsilon \left( {\theta ,{\lambda _{sr}}} \right) }}{{\tau \left( \theta \right) }}} \right] } ,&{}\quad x - \upsilon \left( {\theta ,{\lambda _{sr}}} \right)> 0 \end{array} \right. \nonumber \\&\quad = \left\{ \begin{array}{ll} 0,&{}\quad x \le \upsilon \left( {\theta ,{\lambda _{sr}}} \right) \\ \prod \limits _{k = 1}^M {{F_{{g_{SS,P{R_k}}}}}\left( {\frac{{x - \upsilon \left( {\theta ,{\lambda _{sr}}} \right) }}{{\tau \left( \theta \right) }}} \right) } ,&{}\quad x> \upsilon \left( {\theta ,{\lambda _{sr}}} \right) \end{array} \right. \nonumber \\&\quad = \left\{ \begin{array}{ll} 0,&{}\quad x \le \upsilon \left( {\theta ,{\lambda _{sr}}} \right) \\ {\left( {1 - {e^{ - \frac{{x - \upsilon \left( {\theta ,{\lambda _{sr}}} \right) }}{{\tau \left( \theta \right) {\lambda _{sp}}}}}}} \right) ^M},&{}\quad x> \upsilon \left( {\theta ,{\lambda _{sr}}} \right) \end{array} \right. \nonumber \\&\quad = \left\{ \begin{array}{ll} 0,&{}\quad x \le \upsilon \left( {\theta ,{\lambda _{sr}}} \right) \\ \sum \limits _{q = 0}^M {\left( {\begin{array}{*{20}{c}} q\\ M \end{array}} \right) \times {{\left( { - 1} \right) }^q} \times {e^{ - \frac{{\left( {x - \upsilon \left( {\theta ,{\lambda _{sr}}} \right) } \right) q}}{{\tau \left( \theta \right) {\lambda _{sp}}}}}}} ,&\quad x > \upsilon \left( {\theta ,{\lambda _{sr}}} \right) \end{array} \right. \end{aligned}$$
(A.4)

where \(\left( {\begin{array}{*{20}{c}} a\\ b \end{array}} \right) \) is a binomial coefficient \(\left( {\left( {\begin{array}{*{20}{c}} a\\ b \end{array}} \right) = \frac{{b!}}{{a! \times \left( {b - a} \right) !}}} \right) \).

Hence, the pdf \({f_\Phi }\left( x \right) \) is derived as

$$\begin{aligned}&{f_\Phi }\left( x \right) = \frac{{\partial {F_\Phi }(x)}}{{\partial x}} = \nonumber \\&\quad \left\{ \begin{array}{ll} 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,\,\,x \le \upsilon \left( {\theta ,{\lambda _{sr}}} \right) \\ \frac{1}{{\tau \left( \theta \right) {\lambda _{sp}}}} \times \sum \limits _{q = 1}^M {\left( {\begin{array}{*{20}{c}} q\\ M \end{array}} \right) \times {{\left( { - 1} \right) }^{q + 1}}} \\ \times q \times {e^{ - \frac{{\left( {x - \upsilon \left( {\theta ,{\lambda _{sr}}} \right) } \right) q}}{{\tau \left( \theta \right) {\lambda _{sp}}}}}},x > \upsilon \left( {\theta ,{\lambda _{sr}}} \right) \end{array} \right. \end{aligned}$$
(A.5)

Substituting (A.2), (A.3) and (A.5) into (A.1), we obtain as

$$\begin{aligned}&\Pr \left[ {\left. D \right| \theta < {K^{ - 2}}} \right] \nonumber \\&\quad = \frac{1}{{\tau \left( \theta \right) {\lambda _{sp}}}}\sum \limits _{p = 0}^{N - n} {\sum \limits _{q = 1}^M {\left( {\begin{array}{*{20}{c}} p\\ {N - n} \end{array}} \right) \left( {\begin{array}{*{20}{c}} q\\ M \end{array}} \right) } } \nonumber \\&\qquad \times {\left( { - 1} \right) ^{p + q + 1}} \times q \times {e^{{{\upsilon \left( {\theta ,{\lambda _{sr}}} \right) q} / {\left( {\tau \left( \theta \right) {\lambda _{sp}}} \right) }}}}\nonumber \\&\qquad \times \int \limits _{\upsilon \left( {\theta ,{\lambda _{sr}}} \right) }^\infty {{e^{{{ - nx} / {{\lambda _{sr}}}} - {{px} / {{\lambda _{sr}}}}{{ - qx} / {\left( {\tau \left( \theta \right) {\lambda _{sp}}} \right) }}}}dx} \end{aligned}$$
(A.6)

Solving (A.6), Lemma 1 is proven.

1.2 Appendix B: Proof of Lemma 2

The CDF \({F_{{\gamma _{X,Z}}}}\left( {\left. x \right| x < {K^{ - 2}}} \right) \) of the RV \({\gamma _{X,Z}}\) is expressed and manipulated at the top of next page, where \({f_{{\psi _X}}}\left( y \right) \) is the pdf of the RV \({\psi _X}\), and similarly as in (A.4) and (A.5) in “Appendix A”, \({f_{{\psi _X}}}\left( y \right) \) is obtained from the formula of \({\psi _X}\) in (5) as

$$\begin{aligned}&{F_{{\gamma _{X,Z}}}}\left( {\left. x \right| x< {K^{ - 2}}} \right) \nonumber \\&\quad = \Pr \left[ {\left. {{\gamma _{X,Z}}< x} \right| x< {K^{ - 2}}} \right] \nonumber \\&\quad = \Pr \left[ {\left. {\frac{{Q{g_{X,Z}}}}{{{K^2}Q{g_{X,Z}} + Q\left( {1 + {K^2}} \right) \left( {1 - {\rho ^2}} \right) {\lambda _{X,Z}} + {\rho ^2}\left( {1 + K_t^2} \right) {\psi _X}}}< x} \right| }\right. \nonumber \\&\qquad \left. {x< {K^{ - 2}}} \right] \nonumber \\&\quad = \Pr \left[ \left. Q{g_{X,Z}}\left( {1 - x{K^2}} \right)< xQ\left( {1 + {K^2}} \right) \left( {1 - {\rho ^2}} \right) {\lambda _{X,Z}} \right. \right. \nonumber \\&\qquad \left. \left. + x{\rho ^2}\left( {1 + K_t^2} \right) {\psi _X} \right| x< {K^{ - 2}} \right] \nonumber \\&\quad = \Pr \left[ {\left. {{g_{X,Z}}< \upsilon \left( {x,{\lambda _{X,Z}}} \right) + \tau \left( x \right) \times {\psi _X}} \right| x< {K^{ - 2}}} \right] \nonumber \\&\quad = \int \limits _0^\infty {{f_{{\psi _X}}}\left( y \right) \times {F_{{g_{X,Z}}}}\left( {\left. {\upsilon \left( {x,{\lambda _{X,Z}}} \right) + \tau \left( x \right) \times y} \right| x < {K^{ - 2}}} \right) dy} \end{aligned}$$
(B.1)
$$\begin{aligned}&{f_{{\psi _X}}}\left( y \right) \nonumber \\&\quad = \frac{{\partial {F_{{\psi _X}}}\left( y \right) }}{{\partial y}} = \frac{{\partial \Pr \left[ {{\psi _X}< y} \right] }}{{\partial y}}\nonumber \\&\quad = \frac{{\partial \Pr \left[ {\mathop {\max }\limits _{k = 1,2,\ldots ,M} {g_{X,P{R_k}}}< y} \right] }}{{\partial y}} \nonumber \\&\quad = \frac{{\partial \prod \limits _{k = 1}^M {\Pr \left[ {{g_{X,P{R_k}}} < y} \right] } }}{{\partial y}}\nonumber \\&\quad = \frac{{\partial \prod \limits _{k = 1}^M {{F_{{g_{X,P{R_k}}}}}\left( y \right) } }}{{\partial y}} = \frac{{\partial {{\left( {1 - {e^{ - {y \big / {{\lambda _{X,P{R_k}}}}}}}} \right) }^M}}}{{\partial y}}\nonumber \\&\quad = \frac{1}{{{\lambda _{X,P{R_k}}}}} \times \sum \limits _{t = 1}^M {\left( {\begin{array}{*{20}{c}} t\\ M \end{array}} \right) \times {{\left( { - 1} \right) }^{t + 1}} \times t \times {e^{ - {{ty} \big / {{\lambda _{X,P{R_k}}}}}}}} \end{aligned}$$
(B.2)

Substituting (B.2) into (B.1), \({F_{{\gamma _{X,Z}}}}\left( {\left. x \right| x < {K^{ - 2}}} \right) \) is obtained as

$$\begin{aligned}&{F_{{\gamma _{X,Z}}}}\left( {\left. x \right| x < {K^{ - 2}}} \right) \nonumber \\&\quad = \int \limits _0^\infty {{f_{{\psi _X}}}\left( y \right) \times \left\{ {1 - {e^{{{ - \left( {\upsilon \left( {x,{\lambda _{X,Z}}} \right) + \tau \left( x \right) \times y} \right) } / {{\lambda _{X,Z}}}}}}} \right\} dy} \nonumber \\&\quad = 1 - \frac{{{e^{{{ - \upsilon \left( {x,{\lambda _{X,Z}}} \right) } / {{\lambda _{X,Z}}}}}}}}{{{\lambda _{X,P{R_k}}}}}\sum \limits _{t = 1}^M {\left( {\begin{array}{*{20}{c}} t\\ M \end{array}} \right) \times {{\left( { - 1} \right) }^{t + 1}} \times t} \nonumber \\&\qquad \times \int \limits _0^\infty {{e^{ - {{ty} / {{\lambda _{X,P{R_k}}}}}{{ - \tau \left( x \right) y} / {{\lambda _{X,Z}}}}}}dy} \end{aligned}$$
(B.3)

By solving (B.3), Lemma 2 is proven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, P.N. Joint impacts of hardware impairments, imperfect CSIs, and interference constraints on underlay cooperative cognitive networks with reactive relay selection. Telecommun Syst 71, 65–76 (2019). https://doi.org/10.1007/s11235-018-0508-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-0508-3

Keywords