Skip to main content

Advertisement

Log in

Construction of a stable vehicular ad hoc network based on hybrid genetic algorithm

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In vehicular ad hoc networks, the vehicle speed can exceed 120 kmph. Therefore, any node can enter or leave the network within a very short time. This mobility adversely affects the network connectivity and decreases the life time of all established links. To overcome these problems, many routing protocols based clustering technique have been proposed. Indeed, the poor assignment of vehicles to clusters is the most important shortcomings where an inaccurate affiliation may reduce the algorithm’s effectiveness and disrupt all results and analyzes. Therefore, in this paper, we used a hybrid genetic algorithm to improve the cluster maintenance phase in our Weighted K-medoid Clustering Algorithm (WKCA) proposed recently. The proposed model incorporated the tabu search within genetic algorithm to allow the scan of all search space and to reach the best solution without falling into the local optima. This model improves the assignment of nodes to clusters, which in turn achieves efficient vehicle communication and ensures more stability in clustered architecture. Based on relevant metrics, the results obtained in a simulation game show that the enhanced model (E-WKCA) achieves more stability and robustness when compared to the original algorithm (WKCA) and other approaches designed for the same objective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hajlaoui, R., Moulahi, T., & Guyennet, H. (2018). Vehicular ad hoc networks: from simulations to real-life scenarios. Journal of Fundamental and Applied Sciences, 10(4S), 632–637.

    Google Scholar 

  2. da Cunha, F. D., Boukerche, A., Villas, L., Viana, A. C., & Loureiro, A. A. F. (2014). Data communication in VANETs: A survey, challenges and applications. Research Report No 8498.

  3. Singh, P. K., Lego, K., & Tuithung, T. (2011). Simulation based analysis of adhoc routing protocol in urban and highway scenario of VANET. International Journal of Computer Applications (0975–8887) 12(10).

  4. Toutouh, J., Garcia-Nieto, J., & Alba, E. (2012). Intelligent OLSR routing protocol optimization for VANETs. IEEE Transactions on Vehicular Technology, 61(4), 1884–1894.

    Article  Google Scholar 

  5. Weea, H. M., & Yang, P. C. (2004). The optimal and heuristic solutions of a distribution network. European Journal of Operational Research, 158(3), 626–632.

    Article  Google Scholar 

  6. Hajlaoui, R., Guyennet, H., & Moulahi, T. (2016). A survey on heuristic-based routing methods in vehicular ad-hoc network: Technical challenges and future trends. IEEE Sensors Journal, 16(17), 6782–6792.

    Article  Google Scholar 

  7. Baghel, M., Agrawal, S., & Silakari, S. (2012). Survey of metaheuristic algorithms for combinatorial optimization. International Journal of Computer Applications, 58(19), 21–31.

    Article  Google Scholar 

  8. Yang, X.-S. (2011). Metaheuristic optimization. Scholarpedia, 6(8), 11472.

    Article  Google Scholar 

  9. Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–308.

    Article  Google Scholar 

  10. Hakima, A. (2012). “sur l’hybridation des métaheuristiques”, mémoire de magistère.

  11. El-Mihoub, T. A., Hopgood, A. A., Nolle, L., & Battersby, A. (2006). Hybrid genetic algorithms: A review. Engineering Letters, 13(2), 124–137.

    Google Scholar 

  12. Hajlaoui, R., Moulahi, T., & Guyennet, H. (2018). A weighted k-medoids clustering algorithm for effective stability in vehicular ad hoc networks. IEEE Journal of Communications and Networks.

  13. Kumar, S. N., & Panneerselvam, R. (2012). A survey on the vehicle routing problem and its variants. Intelligent Information Management Journal, 4(03), 66.

    Article  Google Scholar 

  14. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., et al. (2011). Vehicular Networking: A Survey and Tutorial on Requirements, Architectures, Challenges, Standards and Solutions. IEEE Communications Surveys & Tutorials, 13(4), 584–616.

    Article  Google Scholar 

  15. Balaji, S., Sureshkumar, S., & Saravanan, G. (2013). Cluster based ant colony optimization routing for vehicular ad hoc networks. International Journal of Scientific & Engineering Research, 4(6), 26–30.

    Google Scholar 

  16. Sahoo, A., Swain, S. K., Pattanayak, B. K., & Mohanty, M. N. (2016). An optimized cluster based routing technique in VANET for next generation network. In S. Satapathy, J. Mandal, S. Udgata, & V. Bhateja (Eds.), Information systems design and intelligent applications: Advances in intelligent systems and computing (Vol. 433). New Delhi: Springer.

    Chapter  Google Scholar 

  17. Aadil, F., Bajwa, K. B., Khan, S., Chaudary, N. M., & Akram, A. (2016). CACONET: Ant Colony Optimization (ACO) based clustering algorithm for VANET. PLoS ONE, 11(5), e0154080.

    Article  Google Scholar 

  18. Fathian, M., & Jafarian-Moghaddam, A. R. (2015). New clustering algorithms for vehicular ad-hoc network in a highway communication environment. Wireless Networks Journal, 21(8), 2765–2780.

    Article  Google Scholar 

  19. Kumar, S. S., Rajaguru, D., Vengattaraman, T., Dhavachelvan, P., Jesline, A. J., & Amudhavel, J. (2016). Intelligent collision avoidance approach in VANET using artificial bee colony algorithm. In L. Suresh & B. Panigrahi (Eds.), Proceedings of the international conference on soft computing systems. Advances in intelligent systems and computing, vol. 398. New Delhi: Springer.

    Google Scholar 

  20. Harrabi, S., Jaafar, I. B., & Ghedira, K. (2016). A novel clustering algorithm based on agent technology for VANET. Network Protocols and Algorithms Journal, 8(2), 1–19.

    Article  Google Scholar 

  21. Harrabi, S., Jaafar, I. B., & Ghedira, K. (2016). Novel optimized routing scheme for VANETs. In 7th International conference on emerging ubiquitous systems and pervasive networks (EUSPN), Berlin: Springer.

  22. Hadded, M., Zagrouba, R., Laouiti, A., Muhlethaler, P. & Saidane, L. A. (2015). A multi-objective genetic algorithm-based adaptive weighted clustering protocol in VANET. In IEEE congress on evolutionary computation, Sendai, Japan, pp. 994–1002.

  23. Chatterjee, M., Das, S. K., & Turgut, D. (2002). WCA: A weighted clustering algorithm for mobile ad hoc networks. Cluster Computing, 5(2), 193–204.

    Article  Google Scholar 

  24. Moridi, E., & Barati, H. (2016). RMRPTS: A reliable multi-level routing protocol with tabu search in VANET. Telecommunication Systems, 65, 127–137.

    Article  Google Scholar 

  25. M. Ren, L. Khoukhi, H. Labiod, J. Zhang and V. Veque, “A mobility-based scheme for dynamic clustering in vehicular ad-hoc networks (VANETs)”, IEEE/IFIP NOMS Workshop: International Workshop on Urban Mobility & Intelligent Transportation Systems (UMITS), 2016.

  26. Kakkasageri, M. S., & Manvi, S. S. (2014). Multiagent driven dynamic clustering in VANETs. In Elsevier JNCA.

  27. Mitchell, M. (1999). An introduction to genetic algorithms. A Bradford book.

  28. http://www.obitko.com/tutorials/genetic-algorithms/selection.php

  29. http://khayyam.developpez.com/articles/algo/genetic/

  30. Bhattacharjya, R. K. (2015). Introduction to genetic algorithms. Department of Civil Engineering IIT Guwahati.

  31. Hertz, A., & de Werra, D. (1990). The tabu search metaheuristic: How we used it. Annals of Mathematics and Artificial Intelligence, 1(1), 111–121.

    Article  Google Scholar 

  32. Gendreau, M., & Potvin, J.-Y. (2010). Tabu Search. In Handbook of metaheuristics, international series in operations research & management science 146, Springer.

  33. Hajlaoui, R., Gzara, M., Dammak, A. (2011). Hybrid model for solving multi-objective problems using evolutionary algorithm and tabu search. In World of computer science and information technology journal (WCSIT).

  34. Bilge, U., Kurtulan, M., & Kırac, F. (2007). A tabu search algorithm for the single machine total weighted tardiness problem. European Journal of Operational Research, 176(3), 1423–1435.

    Article  Google Scholar 

  35. Bhat, A. (2014). K-medoids clustering using partitioning around medoids for performing face recognition. International Journal of Soft Computing, Mathematics and Control, 3(3), 1–12.

    Article  Google Scholar 

  36. Kaufman, L., & Rousseeuw, P. J. (1987). Clustering by means of Medoids, in statistical data analysis based on the L1-norm and related methods. edited by Y. Dodge, North- Holland, pp. 405–416.

  37. Park, H.-S., Lee, J.-S., & Jun, C.-H. (2006). A K-means-like algorithm for K-medoids clustering and its performance. Department of Industrial and Management Engineering, POSTECH, South Korea.

  38. Bottaci, L. (2001). A genetic algorithm fitness function for mutation testing. Department of Computer Science, University of Hull, UK.

  39. Najeeb, A. R., Aibinu, A. M., Nwohu, M. N., Salami, M. J. E., & Salau, H. B. (2016). Performance analysis of clustering based genetic algorithm. In IEEE international conference on computer and communication engineering (ICCCE), pp. 327–331.

  40. Man, K. F., Tang, K. S., & Kwong, S. (1996). Genetic algorithms: Concepts and applications. IEEE Transactions on Industrial Electronics, 43(5), 519–534.

    Article  Google Scholar 

  41. http://www.obitko.com/tutorials/genetic-algorithms/crossover-mutation.php.

  42. https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1.html#top.

  43. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  44. The Network Simulator—https://www.nsnam.org/.

  45. Fogue, M., Garrido, P., Martinez, F. J., Cano, J-C., Calafate, C. T., & Manzoni, P. (2012). A realistic simulation framework for vehicular networks. In SIMUTOOLS ‘12 Proceedings of the 5th international ICST conference on simulation tools and techniques, pp. 37–46.

  46. Adhvaryu, K. U., & Kamboj, P. (2015). Efficient multicast ad hoc on-demand distance vector routing protocol. Journal of Network Communications and Emerging Technologies, 5(2).

  47. Krishna, M. P. V., & Sebastain, M. P. (2006). HMAODV: History aware on multicast ad hoc on demand distance vector routing. In IEEE international symposium on ad hoc and ubiquitous computing.

  48. Vidhale, B., & Dorle, S. S. (2011). Performance analysis of routing protocols in realistic environment for vehicular ad hoc networks. In IEEE 21st international conference on systems engineering.

  49. Gulati, V., Tiwari, R., & Dumka, A. (2015). Evaluation of routing protocols in congested VANET environment. In IEEE, 2nd international conference on computing for sustainable global development (INDIACom).

  50. Shahidi, R., & Ahmed, M. H. (2014). Probability distribution of end-to-end delay in a highway VANET. IEEE Communications Letters, 18(3), 443–446.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rejab Hajlaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajlaoui, R., Alsolami, E., Moulahi, T. et al. Construction of a stable vehicular ad hoc network based on hybrid genetic algorithm. Telecommun Syst 71, 433–445 (2019). https://doi.org/10.1007/s11235-018-0513-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-0513-6

Keywords

Navigation