Skip to main content
Log in

Approximate expressions of packet error probability, throughput and delay for cognitive radio networks using fixed and adaptive transmit power

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we derive upper bound of Packet Error Probability (PEP), upper bound of delay and lower bound of throughput in cognitive radio networks. Our analysis is valid when the power of secondary source is fixed or adaptive. The secondary source can adapt its transmitting power so that interference to primary receiver is below a given threshold T. The analysis is carried in the absence and presence of interference from primary transmitter. PEP, throughput and delay are derived in closed form and validated using simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  2. Akyildiz, I., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  Google Scholar 

  3. Rini, S., & Hupper, C. (2013). On the capacity of cognitive interference channel with a common cognitive message. Transaction on Emerging Telecommunication Technologies, 1, 12–18.

    Google Scholar 

  4. Alptekin, G. I., & Bener, A. B. (2011). Spectrum trading in cognitive radio networks with strict transmission power control. Transaction on Emerging Telecommunication Technologies, 22(6), 282–295.

    Article  Google Scholar 

  5. Tan, X., Zhang, H., Chen, Q., & Hu, J. (2013). Opportunistic channel selection based on time series prediction in cognitive radio networks‘. Transaction on Emerging Telecommunication Technologies, 17(3), 32–38.

    Google Scholar 

  6. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  7. Menon, R., Buehrer, R., Reed, J. (November 2005). Outage probabilitybased comparison of underlay and overlay spectrum sharing techniques. In IEEE international symposium on new frontiers in dynamic spectrum access networks, Baltimore (pp. 101–109).

  8. Chamkhia, H., Hasna, M. O., Hamila, R., Hussain, S. I. (2012). Performance analysis of relay selection schemes in underlay cognitive networks with Decode and Forward relaying. In IEEE PIMRC

  9. Manna, M. A., Chen, G., & Chambers, J. A. (2014). Outage probability analysis of cognitive relay network with four relay selection and end-to-end performance with modified quasi-orthogonal space-time coding. IET Communications, 8(2), 233–241.

    Article  Google Scholar 

  10. Hussain, S. I., Alouini, M.-S., Hasna, M., Qaraqe, K. (2012). Partial relay selection in underlay cognitive networks with fixed gain relays (pp. 1–5). VTC Spring

  11. Hussain, S. I., Alouini, M. S., Qarage, K., Hasna, M. (2012) Reactive relay selection in underlay cognitive networks with fixed gain relays (pp. 1784–1788). IEE ICC

  12. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.

    Article  Google Scholar 

  13. Luo, L., Zhang, P., Zhang, G., & Qin, J. (2011). Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 15(7), 710–712.

    Article  Google Scholar 

  14. Zhong, C., Ratnarajah, T., & Wong, K.-K. (2011). Outage analysis of decode-and-forward cognitive dual-hop systems with the interference constraint in nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 60(6), 2875–2879.

    Article  Google Scholar 

  15. Kang, X., Zhang, R., Liang, Y.-C., & Garg, H. K. (2011). Optimal power allocation strategies for fading cognitive radio channels with primary user outage constraint. IEEE Journal on Selected Areas in Communications, 29(2), 374–383.

    Article  Google Scholar 

  16. Yan, Z., Zhang, X., & Wang, W. (2011). Exact outage performance of cognitive relay networks with maximum transmit power limits. IEEE Communications Letters, 15(12), 1317–1319.

    Article  Google Scholar 

  17. Kim, H., Lim, S., Wang, H., & Hong, D. (2012). Optimal power allocation and outage analysis for cognitive full duplex relay systems. IEEE Transactions on Wireless Communications, 11(10), 3754–3765.

    Article  Google Scholar 

  18. Tourki, K., Qaraqe, K. A., & Alouini, M.-S. (2013). Outage analysis for underlay cognitive networks sing incremental regenerative relaying. IEEE Transactions on Vehicular Technology, 62(2), 721–734.

    Article  Google Scholar 

  19. Guo, Y., Kang, G., Zhang, N., Zhou, W., & Zhang, P. (2010). Outage performance of relay-assisted cognitive-radio system under spectrum-sharing constraints. Electronics Letters, 46(2), 182–184. Cited by: Papers (60).

    Article  Google Scholar 

  20. Chakraborty, P., & Prakriya, S. (2017). Secrecy outage performance of a cooperative cognitive relay network. IEEE Communications Letters, 21(2), 326–329.

    Article  Google Scholar 

  21. He, J., Guo, S., Pan, G., Yang, Y., & Liu, D. (2017). Relay cooperation and outage analysis in cognitive radio networks with energy harvesting. IEEE Systems Journal, PP(99), 1–12.

    Google Scholar 

  22. Arezumand, H., Zamiri-Jafarian, H., & Soleimani-Nasab, E. (2017). Outage and diversity analysis of underlay cognitive mixed RF-FSO cooperative systems. IEEE/OSA Journal of Optical Communications and Networking, 9(10), 909–920.

    Article  Google Scholar 

  23. Al-Qahtani, F. S., El-Malek, A. H. A., Ansari, I. S., Radaydeh, R. M., & Zummo, S. A. (2017). Outage analysis of mixed underlay cognitive RF MIMO and FSO relaying with interference reduction. IEEE Photonics, 9(2), 1–22.

    Article  Google Scholar 

  24. Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.

    Article  Google Scholar 

  25. Babich, F. (2004). On the performance of efficient coding techniques over fading channels. IEEE Transactions on Wireless Communications, 3(1), 290–299.

    Article  Google Scholar 

  26. Fahimi, M, Ghasemi, A. (2014) Analysis of the PRP M/G/1 queuing system for cognitive radio networks with handoff management. In 2014 22nd Iranian conference on electrical engineering (ICEE) (pp. 1047–1051).

  27. Chu, T. M. C., Phan, H., & Zepernick, H.-J. (2013). On the performance of underlay cognitive radio networks using M/G/1/K Queueing model. IEEE Communications Letters, 17(5), 876–879.

    Article  Google Scholar 

  28. Shi, Y., Hou, Y. T., Kompella, S., & Sherali, H. D. (2011). Maximizing capacity in multihop cognitive radio networks under the SINR model. IEEE Transactions on Mobile Computing, 10(7), 954–967.

    Article  Google Scholar 

  29. Zhang, R. (2009). On peak versus average interference power constraints for protecting primary users in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(4), 2112–20.

    Article  Google Scholar 

  30. Chan, W. C., Lu, T. C., & Chen, R. J. (1997). Pollaczek Khinchin formula for the M/G/1 queue in discrete time with vacations. IEE Proceedings-Computers and Digital Techniques, 144(4), 222–226.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadhir Ben Halima.

Appendices

Appendix A

The SINR (16) can be expressed as

$$\begin{aligned} \Gamma _{SD}=\frac{c_{1}Y_{1}}{Y_{2}(c_{2}+c_{3}Y_{3})} \end{aligned}$$
(34)

where \(Y_{1}=|h_{SD}|^{2},Y_{2}=|h_{S \ddot{} P_{R}}|^{2},Y_{3}=|h_{P_{T}D}|^{2},c_{1}=T,c_{2}=N_{0},c_{3}=E_{P_{T}}.\)

For Rayleigh fading channels, \(Y_{1}\),\(Y_{2}\) and \(Y_{3}\) follow an exponential distribution distributed with mean \(\mu _{i}=E(Y_{i})\).

We have

$$\begin{aligned}&P\left( \Gamma _{SD}<x|\frac{T}{|h_{SP_{R}}|^{2}}<E^{\max }\right) \nonumber \\&\quad =P\left( \Gamma _{SD}<x|Y_{2}>\frac{T}{E^{\max }}\right) \nonumber \\&\quad =P\left( c_{1}Y_{1}<xY_{2}(c_{2}+c_{3}Y_{3})|Y_{2}>\frac{T}{E^{\max }} \right) \end{aligned}$$
(35)

We define \(Y_{4}=c_{2}+c_{3}Y_{3}\). The CDF of \(Y_{4}\) is equal to

$$\begin{aligned} F_{Y_{4}}(w)=F_{Y_{3}}(\frac{w-c_{2}}{c_{3}}) \end{aligned}$$
(36)

We deduce the PDF of \(Y_4\)

$$\begin{aligned} f_{Y_{4}}(w)=\frac{1}{c_{3}}f_{Y_{3}}(\frac{w-c_{2}}{c_{3}}). \end{aligned}$$
(37)

Equation (35) is expressed as

$$\begin{aligned}&P\left( c_{1}Y_{1}<xY_{2}(c_{2}+c_{3}Y_{3})|Y_{2}>\frac{T}{E^{\max }}\right) \nonumber \\&\quad =\int _{\frac{T}{E^{\max }}}^{+\infty }\int _{c_{2}}^{+\infty }P(c_{1}Y_{1}<xvw)f_{Y_{2}|Y_{2}>\frac{T}{E^{\max }}}(v)f_{Y_{4}}(w)dvdw\nonumber \\&\quad =\int _{c_{2}}^{+\infty }\int _{\frac{T}{E^{\max }}}^{+\infty }e^{\frac{T}{ E_{\max }\mu _{2}}}\left[ 1-e^{-\frac{xvw}{c_{1}\mu _{1}}}\right] \frac{e^{-\frac{v}{\mu _{2}}}}{\mu _{2}}dv\frac{e^{-\frac{(w-c_{2})}{ c_{3}\mu _{3}}}}{c_{3}\mu _{3}}dw\nonumber \\ \end{aligned}$$
(38)

We have

$$\begin{aligned} \int _{\frac{T}{E^{\max }}}^{+\infty }e^{\frac{T}{E_{\max }\mu _{2}}} \left[ 1-e^{-\frac{xvw}{c_{1}\mu _{1}}}\right] \frac{e^{-\frac{v}{ \mu _{2}}}}{\mu _{2}}dv=1-\frac{e^{-\frac{Txw}{E^{\max }c_{1\mu _{1}}}}}{1+\frac{\mu _{2}xw}{\mu _{1}c_{1}}} \nonumber \\ \end{aligned}$$
(39)

Using (38) and (39), we have

$$\begin{aligned}&P\left( \Gamma _{SD}<x|\frac{T}{|h_{SP_{R}}|^{2}}<E^{\max }\right) \nonumber \\&\quad =\int _{c_{2}}^{+\infty }\left[ 1-\frac{e^{-\frac{Txw}{E^{\max }c_{1\mu _{1}}}}}{1+\frac{\mu _{2}xw}{\mu _{1}c_{1}}}\right] \frac{e^{-\frac{ (w-c_{2})}{c_{3}\mu _{3}}}}{c_{3}\mu _{3}}dw\nonumber \\&\quad =1-\frac{e^{\frac{c_{2}}{c_{3}\mu _{3}}}}{c_{3}\mu _{3}} \int _{c_{2}}^{+\infty }\frac{e^{-w\left( \frac{1}{c_{3}\mu _{3}}+\frac{xT }{E^{\max }c_{1}\mu _{1}}\right) }}{1+\frac{\mu _{2}xw}{\mu _{1}c_{1}}}dw \end{aligned}$$
(40)

For

$$\begin{aligned} z=1+\frac{\mu _{2}xw}{\mu _{1}c_{1}} \end{aligned}$$
(41)

We can write

$$\begin{aligned}&P\left( \Gamma _{SD}<x|\frac{T}{|h_{SP_{R}}|^{2}}<E^{\max }\right) \nonumber \\&\quad =1-\frac{ e^{\frac{c_{2}}{c_{3}\mu _{3}}}}{c_{3}\mu _{3}}\frac{\mu _{1}c_{1}}{\mu _{2}x}\nonumber \\&\qquad \times \int _{1+\frac{\mu _{2}xc_{2}}{\mu _{1}c_{1}} }^{+\infty }\frac{e^{-\left( z-1\right) \frac{\mu _{1}c_{1}}{\mu _{2}x}\left( \frac{1}{c_{3}\mu _{3}}+\frac{xT}{E^{\max }c_{1}\mu _{1} }\right) }}{z}dz \nonumber \\&\quad =1-\frac{e^{\frac{c_{2}}{c_{3}\mu _{3}}}}{c_{3}\mu _{3}}\frac{ \mu _{1}c_{1}}{\mu _{2}x}e^{\frac{\mu _{1}c_{1}}{c_{3}\mu _{3}\mu _{2}x}+\frac{T}{E^{\max }\mu _{2}}}\nonumber \\&\qquad \times E_{i}\left( \left( \frac{ \mu _{1}c_{1}}{\mu _{2}x}+c_{2}\right) \left( \frac{1}{c_{3}\mu _{3}}+\frac{xT}{E^{\max }c_{1}\mu _{1}}\right) \right) \end{aligned}$$
(42)

where \(E_{i}(x)\) is the exponential integral function

$$\begin{aligned} E_{i}(x)=\int _{x}^{+\infty }\frac{e^{-t}}{t}dt. \end{aligned}$$
(43)

Appendix B

We have

$$\begin{aligned}&P\left( \Gamma _{P_{T}P_{R}}<x,|h_{SP_{R}}|^{2}<\frac{T}{E_{S}}\right) \nonumber \\&\quad =P(E_{P_{T}}|h_{P_{T}P_{R}}|^{2}<x(N_{0}+E_{S}|h_{SP_{R}}|^{2}),|h_{SP_{R}}|^{2}< \frac{T}{E_{S}})\nonumber \\ \end{aligned}$$
(44)

Let \(Z=E_{P_{T}}|h_{P_{T}P_{R}}|^{2}\) and \(W=N_{0}+E_{S}|h_{SP_{R}}|^{2}|\)\( |h_{SP_{R}}|^{2}<\frac{T}{E_{S}},\) we deduce

$$\begin{aligned}&P\left( E_{P_{T}}|h_{P_{T}P_{R}}|^{2}<x\left( N_{0}+E_{S}|h_{SP_{R}}|^{2}\right) | |h_{SP_{R}}|^{2}<\frac{T}{E_{S}}\right) \nonumber \\&\quad =\int _{N_{0}}^{N_{0}+T}F_{Z}(xu)f_{W}(u-N_{0})du \end{aligned}$$
(45)

where

$$\begin{aligned} f_{W}(u-N_{0})= & {} \frac{\exp (-\frac{(u-N_{0})}{E_{S}\sigma _{SP_{R}}^{2}})}{ E_S\sigma _{SP_{R}}^{2}\left[ 1-\exp (-\frac{T}{E_{S }\sigma _{SP_{R}}^{2}})\right] } \end{aligned}$$
(46)
$$\begin{aligned} F_{Z}(xu)= & {} 1-\exp (-\frac{xu}{E_{P_{T}}\sigma _{P_{T}P_{R}}^{2}}) \end{aligned}$$
(47)

We finally obtain

$$\begin{aligned}&P(\Gamma _{P_{T}P_{R}}<x,|h_{SP_{R}}|^{2}<\frac{T}{E_{S}})=\left[ 1-\exp (-\frac{T}{E_{S }\sigma _{SP_{R}}^{2}})\right] \nonumber \\&\quad \times \left[ 1-\exp (-\frac{N_{0}x}{E_{P_{T}}\sigma _{P_{T}P_{R}}^{2}})\frac{ E_{P_{T}}\sigma _{P_{T}P_{R}}^{2}}{E_{P_{T}}\sigma _{P_{T}P_{R}}^{2}+xE_{S }\sigma _{SP_{R}}^{2}}\right] \end{aligned}$$
(48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Halima, N., Boujemâa, H. Approximate expressions of packet error probability, throughput and delay for cognitive radio networks using fixed and adaptive transmit power. Telecommun Syst 71, 19–30 (2019). https://doi.org/10.1007/s11235-018-0515-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-0515-4

Keywords

Navigation