Skip to main content
Log in

A survey on low-power wide area networks for IoT applications

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

We are on the entry of the exponential advancement of the internet-of-things (IoT) due to the quick development of internet-connected smart-objects. As the number of connected smart-objects increase, IoT will continue to advance by providing connectivity and interactions between the physical and the cyber world. This connectivity is characterized by low throughput, delay sensitivity, small and wide coverage, low power consumption, low device, etc. Which explains the emergence of low power wide area network (LPWAN). LPWAN technologies are an alternative promising connectivity solutions for Internet of Things. However, the lack of an overall LPWAN knowledge that present a comprehensive analysis of LPWAN technologies is presently constraining the achievement of the modern IoT vision. In this paper, we begin with a detailed analysis of the conventional high power long-range network technologies that considers IoT applications and requirements. We further point out the need for dedicated low power wide area technologies in IoT systems. In addition, we analyse the technical specification based on the PHY and MAC layers of the technologies that are already deployed, or likely to be deployed. The focus is to incorporate both standard and proprietary technologies in our study. Furthermore, we present the modelling techniques and performance metrics that are adopted in LPWAN networks analysis. Finally, challenges and open problems are presented. The main contribution of this study is that it provides an enhanced summary of the current state-of-the-art of LPWAN suitable to meet the requirements of IoT, while uniquely providing LPWAN’s modelling techniques, performance metrics and their associated enablers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gazis, V. (2016). A survey of standards for machine to machine (M2M) and the internet of things (IoT). IEEE Communications Surveys and Tutorials, 19, 1-1.

    Google Scholar 

  2. Xu, J., Yao, J., Wang, L., Ming, Z., Wu, K., & Chen, L. (2018). Narrowband internet of things: Evolutions, technologies, and open issues. IEEE Internet of Things Journal, 5, 1449–1462.

    Article  Google Scholar 

  3. Angelakis, V., Avgouleas, I., Pappas, N., Fitzgerald, E., & Yuan, D. (2016). Allocation of heterogeneous resources of an IoT device to flexible services. IEEE Internet of Things Journal, 3, 691–700.

    Article  Google Scholar 

  4. Abu-Mahfouz, A. M., Hamam, Y., Page, P. R., & Djouani, K. (2016). Real-time dynamic hydraulic model for potable water loss reduction. Procedia Engineering, 7, 99–106.

    Article  Google Scholar 

  5. Abu-Mahfouz, A. M., Olwal, T., Kurien, A., Munda, J. L., & Djouani, K. (2015). Toward developing a distributed autonomous energy management system (DAEMS). In Proceedings of the IEEE AFRICON, Addis Ababa (pp. 1–6).

  6. Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1–28.

    Article  Google Scholar 

  7. Ntuli, N., & Abu-Mahfouz, A. M. (2016). A simple security architecture for smart water management system. Procedia Computer Science, 83, 1164–1169.

    Article  Google Scholar 

  8. Louw, J., Niezen, G., Ramotsoela, T. D., & Abu-Mahfouz, A. M. (2016). A key distribution scheme using elliptic curve cryptography in wireless sensor networks. In Proceedings of the 14th IEEE international conference on industrial informatics (INDIN), Poitiers (pp. 1166–1170).

  9. Voas, J. (2016). Demystifying the internet of things. Computer, 49, 80–83.

    Article  Google Scholar 

  10. Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The Internet of things for health care: A comprehensive survey. IEEE Access, 3, 678–708.

    Article  Google Scholar 

  11. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29, 1645–1660.

    Article  Google Scholar 

  12. Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10, 1497–5116.

    Article  Google Scholar 

  13. Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1, 22–32.

    Article  Google Scholar 

  14. Bontu, C . S., Periyalwar, S., & Pecen, M. (2014). Wireless wide-area networks for internet of things: An air interface protocol for IoT and a simultaneous access channel for uplink IoT communication. IEEE Vehicular Technology Magazine, 9, 54–63.

    Article  Google Scholar 

  15. Mudumbe, M. J., & Abu-Mahfouz, A. M. (2015). Smart water meter system for user-centric consumption measurement. In: Proceeding of the IEEE international conference on industrial informatics, Cambridge (pp. 993–998).

  16. Dludla, A. G., Abu-Mahfouz, A. M., Kruger, C. P., & Isaac, J. S. (2013). Wireless sensor networks testbed: ASNTbed. In Proceeding of the IST-Africa Conference, Nairobi (pp. 1–10).

  17. Abu-Mahfouz, A. M., Steyn, L. P., Isaac, S. J., & Hancke, G. P. (2012). Multi-level Infrastructure of Interconnected Testbeds of Large-scale Wireless Sensor Networks (MI2T-WSN). In Proceedings of the international conference on wireless networks—ICWN, Las Vegas, Nevada (pp. 445–450).

  18. Nolan, K. E., Guibene, W., & Kelly, M. Y. (2016). An evaluation of low power wide area network technologies for the internet of things. In International wireless communications and mobile computing conference (IWCMC), Paphos (pp. 439–444).

  19. Zheng, K., Zhao, S., Yang, Z., Xiong, X., & Xiang, W. (2016). Design and implementation of LPWA-based air quality monitoring system. IEEE Access, 4, 3238–3245.

    Article  Google Scholar 

  20. Bizanis, N., & Kuipers, F . A. (2016). SDN and virtualization solutions for the internet of things: A survey. IEEE Access, 4, 5591–5606.

    Article  Google Scholar 

  21. Li, Y., Cheng, X., Cao, Y., Wang, D., & Yang, L. (2018). Smart choice for the smart grid: Narrowband internet of things (NB-IoT). IEEE Internet of Things Journal, 5, 1505–1515.

    Article  Google Scholar 

  22. Vallati, C., Virdis, A., Mingozzi, E., & Stea, G. (2016). Mobile-edge computing come home connecting things in future smart homes using LTE device-to-device communications. IEEE Consumer Electronics Magazine, 5, 77–83.

    Article  Google Scholar 

  23. Mysore Balasubramanya, N., Lampe, L., Vos, G., & Bennett, S. (2016). Low SNR uplink CFO estimation for energy efficient IoT using LTE. IEEE Access, 4, 3936–3950.

    Article  Google Scholar 

  24. Edwards, C. (2016). Over the hills & far away [communications sensors]. Engineering and Technology, 11, 60–63.

    Article  Google Scholar 

  25. So, J., Kim, D., Kim, H., Lee, H., Park, S. (2016). LoRaCloud: LoRa platform on OpenStack. In IEEE NetSoft conference and workshops (NetSoft) (pp. 431–434).

  26. Zheng, K., Zhao, S., Yang, Z., Xiong, X., & Xiang, W. (2016). Design and implementation of LPWA-based air quality monitoring system. IEEE Access, 4, 3238–3245.

    Article  Google Scholar 

  27. Xiong, X., Zheng, K., Xu, R., Xiang, W., & Chatzimisios, P. (2015). Low power wide area machine-to-machine networks: Key techniques and prototype. IEEE Communications Magazine, 53, 64–71.

    Article  Google Scholar 

  28. Andreev, S., Galinina, O., Pyattaev, A., Gerasimenko, M., Tirronen, T., Torsner, J., et al. (2015). Understanding the IoT connectivity landscape: A contemporary M2M radio technology roadmap. IEEE Communications Magazine, 53, 32–40.

    Article  Google Scholar 

  29. Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys and Tutorials, 23, 1-1.

    Google Scholar 

  30. Centenaro, M., Vangelista, L., Zanella, A., & Zorzi, M. (2016). Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wireless Communications, 23, 60–67.

    Article  Google Scholar 

  31. Rita Palattella, M., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., et al. (2016). Internet of things in the 5G Era: Enablers, architecture, and business models. IEEE Journal on Selected Areas in Communications, 34, 510–527.

    Article  Google Scholar 

  32. AbuAli, N. (2012). Power management in solar-powered long range WiFi test-bed. In IEEE international conference on communications (ICC), Ottawa, ON (pp. 5983–5987)

  33. Adame, T., Bel, A., Bellalta, B., Barcelo, J., & Oliver, M. (2014). IEEE 802.11AH: The WiFi approach for M2M communications. IEEE Wireless Communications, 21, 144–152.

    Article  Google Scholar 

  34. Ali, A., Hamouda, W., & Uysal, M. (2015). Next generation M2M cellular networks: Challenges and practical considerations. IEEE Communications Magazine, 53, 18–24.

    Article  Google Scholar 

  35. De Sanctis, M., Cianca, E., Araniti, G., Bisio, I., & Prasad, R. (2016). Satellite communications supporting internet of remote things. IEEE Internet of Things Journal, 3, 113–123.

    Article  Google Scholar 

  36. Evans, B., Onireti, O., Spathopoulos, T., & Imran, M. A. (2015). The role of satellites in 5G. In European Signal Processing Conference (EUSIPCO), Nice (pp. 2756–2760).

  37. Chen, X., Rhee, W., & Wang, Z. (2015). Low power sensor design for IoT and mobile healthcare applications. China Communications, 12, 42–54.

    Article  Google Scholar 

  38. Bardyn, J. P., Melly, T., Seller, O., & Sornin, N. (2016). IoT: The era of LPWAN is starting now. In European solid-state circuits conference, Lausanne (pp. 25–30).

  39. Kim, I., & Sahu, S. (2014). Enabling ubiquitous application access for IoT. In EEE/CIC International conference on communications in China–workshops (CIC/ICCC), Shanghai (pp. 1–5).

  40. Shaikh, F. K., Zeadally, S., & Exposito, E. (2017). Enabling technologies for green internet of things. IEEE Systems Journal, 2, 983–994.

    Article  Google Scholar 

  41. LoRa Alliance Technical Marketing Workgroup: LoRaWAN-What is it?. https://www.lora-alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf. Nov 2015 Accessed on 13 December 2016.

  42. Mosenia, A., & Jha, N. K. (2017). A comprehensive study of security of internet-of-things. IEEE Transactions on Emerging Topics in Computing, 4, 586–602.

    Article  Google Scholar 

  43. Weightless: Unbeatable secure networking. http://www.weightless.org/keyfeatures/security. Accessed on 03 Mar 2017.

  44. Li, Y., & Chen, M. (2015). Software-defined network function virtualization: A survey. IEEE Access, 3, 2542–2553.

    Article  Google Scholar 

  45. Bera, S., Misra, S., Roy, S. K., & Obaidat, M. S. (2018). Soft-WSN: Software-defined WSN management system for IoT applications. IEEE Systems Journal, 12, 2074–2081.

    Article  Google Scholar 

  46. Sood, K., Yu, S., & Xiang, Y. (2016). Software-defined wireless networking opportunities and challenges for internet-of-things: A review. IEEE Internet of Things Journal, 3, 453–463.

    Article  Google Scholar 

  47. Chatras, B., & Ozog, F. F. (2016). Network functions virtualization: The portability challenge. IEEE Network, 30, 4–8.

    Article  Google Scholar 

  48. Khan, I., Belqasmi, F., Glitho, R., Crespi, N., Morrow, M., & Polakos, P. (2016). Wireless sensor network virtualization: A survey. IEEE Communications Surveys and Tutorial, 18, 553–576.

    Article  Google Scholar 

  49. Nguyen, K., & Cheriet, M. (2016). Virtual edge-based smart community network management. IEEE Internet Computing, 20, 32–41.

    Article  Google Scholar 

  50. Dong, X., Guo, Z., Zhou, X., Qi, H., & Li, K. (2017). AJSR: An efficient multiple jumps forwarding scheme in software-defined WAN. IEEE Access, 5, 3139–3148 (2017).

  51. Dong, X., Guo, Z., Zhou, X., Qi, H., & Li, K. (2017). AJSR: An efficient multiple jumps forwarding scheme in software-defined WAN. IEEE Access, pp. 1–1.

  52. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.

    Article  Google Scholar 

  53. Lara-Cueva, R. A., Gordillo, R., Valencia, L., & Benítez, D. S. (2017). Determining the main CSMA parameters for adequate performance of WSN for real-time volcano monitoring system applications. IEEE Sensors Journal, 17, 1493–1502.

    Article  Google Scholar 

  54. Modieginyane, K. M., Letswamotse, B. B., Malekian, R., & Abu-Mahfouz, A. M. (2018). Software defined wireless sensor networks application opportunities for efficient network management: A survey. Computers and Electrical Engineering, 66, 274–287.

    Article  Google Scholar 

  55. Ndiaye, M., Hancke, G. P., & Abu-Mahfouz, A. M. (2017). Software defined networking for improved wireless sensor network management: A survey. Sensors, 17, 1–32.

    Article  Google Scholar 

  56. Masonta, M. T., Mekuria, F., Mzyece, M., & Djouani, K. (2015). Adaptive spectrum decision framework for heterogeneous dynamic spectrum access networks. In The proceedings of the IEEE AFRICON, Addis Ababa (pp. 1–5).

  57. Gao, Y., Qin, Z., Feng, Z., Zhang, Q., Holland, O., & Dohler, M. (2016). Scalable and reliable IoT enabled by dynamic spectrum management for M2M in LTE-A. IEEE Internet of Things Journal, 3, 1135–1145.

    Article  Google Scholar 

  58. Jutila, M. (2016). An adaptive edge router enabling internet of things. IEEE Internet of Things Journal, 3, 1061–1069.

    Article  Google Scholar 

  59. Tentzeris, M. M., Georgiadis, A., & Roselli, L. (2014). Energy harvesting and scavenging [scanning the issue]. Proceedings of the IEEE, 102, 1644–1648.

    Article  Google Scholar 

  60. Gorlatova, M., Sarik, J., Grebla, G., Cong, M., Kymissis, I., & Zussman, G. (2015). Movers and shakers: Kinetic energy harvesting for the internet of things. IEEE Journal on Selected Areas in Communication, 33, 1624–1639.

    Article  Google Scholar 

  61. Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V. C. M., & Guan, Y. L. (2015). Wireless energy harvesting for the internet of things. IEEE Communications Magazine, 553, 102–108.

    Article  Google Scholar 

  62. Mahapatra, C., Sheng, Z., Kamalinejad, P., Leung, V. C. M., & Mirabbasi, S. (2016). Optimal power control in green wireless sensor networks with wireless energy harvesting, wake-up radio and transmission control. IEEE Access, 5, 501–518.

    Article  Google Scholar 

  63. Drubin, C. (2014). The internet of things will drive wireless connected devices to 40.9 billion in 2020. Microwave Journal, 57, 51.

    Google Scholar 

  64. Chen, Y., et al. (2014). Time-reversal wireless paradigm for green internet of things: An overview. IEEE Internet of Things Journal, 1, 81–98.

    Article  Google Scholar 

  65. Zhu, C., Leung, V. C. M., Shu, L., & Ngai, E. C. H. (2015). Green internet of things for smart world. IEEE Access, 3, 2151–2162.

    Article  Google Scholar 

  66. Zhou, Z., Dong, M., Ota, K., Wang, G., & Yang, L. T. (2016). Energy-efficient resource allocation for D2D communications underlaying cloud-RAN-based LTE-a networks. IEEE Internet of Things Journal, 3, 428–438.

    Article  Google Scholar 

  67. Bor, M., Vidler, J.E., & Roedig, U. (2016). LoRa for the internet of things. In International conference on embedded wireless systems and networks, Canada (pp. 361–366).

  68. Bor, M., Roedig, U., Voigt, T., & Alonso, J. (2016). Do LoRa low-power wide-area networks scale?. In International conference on modeling, analysis and simulation of wireless and mobile systems, New York (pp. 59–67).

  69. Margelis, G., Piechocki, R., Kaleshi, D., & Thomas, P. (2015). Low throughput networks for the IoT: Lessons learned from industrial implementations. In IEEE 2nd World forum on internet of things (WF-IoT), Milan (pp. 181–186).

  70. Vejlgaard, B., Lauridsen, M., Nguyen, H., Kovacs, I. Z., Mogensen, P., & Sorensen, M. (2017). Coverage and capacity analysis of Sigfox, LoRa, GPRS, and NB-IoT. In IEEE vehicular technology conference (VTC Spring), Sydney (pp. 1–5).

  71. Weightless: Which Weightless Standard? http://www.weightless.org/about/which-weightless-standard. Accessed on 19 Dec 2016.

  72. Weightless: Ultra-low energy consumption. http://www.weightless.org/keyfeatures/power. Accessed on Feb 21, 2017.

  73. Weightless: Weightless and ETSI partner on LPWAN IoT standards development. http://www.weightless.org/news/weightless-and-etsi-partner-on-lpwan-iot-standards-development. June 14 , 2016. Accessed on 21 Jan 2017.

  74. Abbas, R. A., Al-Sherbaz, A., Bennecer, A., & Picton, P. (2017). A new channel selection algorithm for the weightless-n frequency hopping with lower collision probability. In International conference on the network of the future (NOF), London (pp. 171–175).

  75. Ismail, D., Rahman, M., & Saifullah, A. (2018). Low-power wide-area networks: Opportunities, challenges, and directions. In NSF work-shop on smart and connected communities: Technological foundations, challenges and opportunities (pp. 1–6).

  76. Ingenu: Capacity. http://www.ingenu.com/technology/rpma/capacity/. Accessed on Feb 21, 2017.

  77. Ingenu: RPMA Technology. http://www.ingenu.com/technology/rpma/. Accessed on 20 Dec, 2016.

  78. Isaac Brown: A Detailed Breakdown of LPWAN Technologies and Providers. http://web.luxresearchinc.com/hubfs/InsightBreakdownofLPWANTechnologies.pdf?t=1461874447328. Accessed on 20 Dec, 2016.

  79. WAVIoT: WAVIoT NB-FI LPWAN Technology. http://dgmatics.com/wp.pdf. 6 June 2016. Accessed on 20 Dec, 2016.

  80. Weyn, M., Ergeerts, G., Berkvens, R., Wojciechowski, B., & Tabakov, T. (2015). DASH7 alliance protocol 1.0: Low-power, mid-range sensor and actuator communication. In IEEE Conference on Standards for Communications and Networking (CSCN), Tokyo (pp. 54–59).

  81. DASH Alliance: Why DASH7? http://www.dash7-alliance.org/why-dash7/. Accessed on 2 Jan, 2017.

  82. Tomás, J. P. (2018). Operators in Korea, Netherlands deploy LoRa networks for IoT 2016. http://www.rcrwireless.com/20160704/carriers/operatorskoreanetherlandsdeploy-loranetworks-iot-tag23. Accessed on 20 Nov, 2018.

  83. Condoluci, M., Araniti, G., Mahmoodi, T., & Dohler, M. (2016). Enabling the IoT machine age with 5G: Machine-type multicast services for innovative real-time applications. IEEE Access, 4, 5555–5569.

    Article  Google Scholar 

  84. GSM: Extended Coverage–GSM–Internet of Things (EC-GSM-IoT ). http://www.gsma.com/connectedliving/extended-coverage-gsm-internet-of-things-ec-gsm-iot/. Accessed on 22 Dec, 2016.

  85. Balasubramanya, N. M., Lampe, L., Vos, G., & Bennett, S. (2017). On timing reacquisition and enhanced primary synchronization signal (ePSS) design for energy efficient 3GPP LTE MTC. IEEE Transactions on Mobile Computing, 16, 2292–2305.

    Article  Google Scholar 

  86. Gozalvez, J. (2016). New 3GPP Standard for IoT [Mobile Radio]. IEEE Vehicular Technology Magazine, 11, 14–20.

    Article  Google Scholar 

  87. Ratasuk, R., Vejlgaard, B., Mangalvedhe, N., & Ghosh, A. (2016). NB-IoT system for M2M communication. In IEEE Wireless Communications and Networking Conference Workshops (WCNCW) (pp. 428–432).

  88. Ijaz, A., Zhang, L., Grau, M., Mohamed, A., Vural, S., Quddus, A. U., et al. (2016). Enabling massive IoT in 5G and beyond systems: PHY radio frame design considerations. IEEE Access, 4, 3322–3339.

    Article  Google Scholar 

  89. Adame, T., Bel, A., Bellalta, B., Barcelo, J., & Oliver, M. (2014). IEEE 802.11AH: The WiFi approach for M2M communications. IEEE Wireless Communications, 4, 144–152.

    Article  Google Scholar 

  90. m2comm-semi: A Cellular-type Protocol Innovation for the Internet of Things. http://www.theinternetofthings.eu/sites/default/files/%5Buser-name%5D/M2C%20Whitepaper%20for%20IoT%20Connectivity.pdf. January 2015. Accessed on 10 February 2017.

  91. Aust, S., Prasad, R. V., & Niemegeers, I. G. M. M. (2015). Outdoor long-range WLANs: A lesson for IEEE 802.11ah. IEEE Communications Surveys and Tutorials, 17, 1761–1775.

    Article  Google Scholar 

  92. Yin, Y., Yan, Y., Wei, C., & Yang, S. (2015). A low-power low-cost GFSK demodulator with a robust frequency offset tolerance. IEEE Transactions on Circuits and Systems II: Express Briefs, 61, 696–700.

    Article  Google Scholar 

  93. Mahesh, R. U., & Chaturvedi, A. K. (2010). Closed form BER expressions for BPSK OFDM systems with frequency offset. IEEE Communications Letters, 14, 731–733.

    Article  Google Scholar 

  94. Murota, K. (1985). Spectrum efficiency of GMSK land mobile radio. IEEE Transactions on Vehicular Technology, 34, 69–75.

    Article  Google Scholar 

  95. Birk, Y. (2010). Rejuvenating ALOHA: Motivation, approaches and insights. In IEEE Information Theory Workshop on Information Theory, Cairo (pp. 1–5).

  96. ABI Reseach: IoT Growth Is Non-Cellular LPWA’s Greatest Ally, But Its Biggest Foe Is Lack of Standards. https://www.abiresearch.com/press/iot-growth-non-cellular-lpwas-greatest-ally-its-bi/. Accessed on 10 Feb 2017.

  97. OpenStand: Open Standards vs. Proprietary: Are Open Standards Really the Wave of the Future for IoT?. https://open-stand.org/open-standards-vs-proprietary-are-open-standards-really-the-wave-of-the-future-for-iot/. Accessed on 10 Feb, 2017.

  98. Fuhong, L., Qian, L., Xianwei, Z., Yueyun, C., & Daochao, H. (2014). Cooperative differential game for model energy-bandwidth efficiency tradeoff in the internet of things. China Communications, 11, 92–102.

    Article  Google Scholar 

  99. Semasinghe, P., Maghsudi, S., & Hossain, E. (2017). Game theoretic mechanisms for resource management in massive wireless IoT systems. IEEE Communications Magazine, 55, 121–127.

    Article  Google Scholar 

  100. Qian, J., Gao, F., Wang, G., Jin, S., & Zhu, H. B. (2017). Noncoherent detections for ambient backscatter system. IEEE Transactions on Wireless Communications, 16, 1412–1422.

    Article  Google Scholar 

  101. Dong, Y., Wang, J., Shim, B., & Kim, D. I. (2016). DEARER: A distance-and-energy-aware routing with energy reservation for energy harvesting wireless sensor networks. IEEE Journal on Selected Areas in Communications, 34, 3798–3813.

    Article  Google Scholar 

  102. Goursaud, C., & Gorce, J. M. (2015). Dedicated networks for IoT: PHY / MAC state of the art and challenges. EAI Endorsed Transactions on Internet of Things, 15, 1–11.

    Google Scholar 

  103. Proakis, J., & Salehi, M. (2008). Digital Communications (5th ed.). New York: McGraw Hill.

    Google Scholar 

  104. Kaur, N., & Sood, S. K. (2017). An energy-efficient architecture for the internet of things (IoT). IEEE Systems Journal, 11, 796–805.

    Article  Google Scholar 

  105. Yi, G., Park, J. H., & Choi, S. (2016). Energy-efficient distributed topology control algorithm for low-power IoT communication networks. IEEE Access, 2016(4), 9193–9203.

    Article  Google Scholar 

  106. Srivastava, V., et al. (2005). Using game theory to analyze wireless ad hoc networks. IEEE Communications Surveys and Tutorials, 7, 46–56.

    Article  Google Scholar 

  107. Schmitendorf, W. (1973). Cooperative games and vector-valued criteria problems. IEEE Transactions on Automatic Control, 18, 139–144.

    Article  Google Scholar 

  108. Meenakshi, K., Singh, N. P. (2016). A comparative study of cooperative and non-cooperative game theory in network selection. In International conference on computational techniques in information and communication technologies (ICCTICT), New Delhi (pp. 612–617).

  109. Na, J., Lin, K. J., Huang, Z., & Zhou, S. (2015). An evolutionary game approach on IoT service selection for balancing device energy consumption. In IEEE 12th international conference on e-business engineering (pp. 331–338).

  110. Hu, S., Guo, H., Jin, C., Huang, Y., Yu, B., & Li, S. (2016). Frequency-domain oversampling for cognitive CDMA systems: Enabling robust and massive multiple access for internet of things. IEEE Access, 4, 4583–4589.

    Article  Google Scholar 

  111. Zhang, D., Zhou, Z., Mumtaz, S., Rodriguez, J., & Sato, T. (2016). One integrated energy efficiency proposal for 5G IoT communications. IEEE Internet of Things Journal, 3, 1346–1354.

    Article  Google Scholar 

  112. Al-Kashoash, H., & Kemp, A. H. (2017). Comparison of 6LoWPAN and LPWAN for the internet of things. Australian Journal of Electrical and Electronics Engineering, 13, 268–274.

    Article  Google Scholar 

  113. Cheng, C., Lu, R., Petzoldt, A., & Takagi, T. (2017). Securing the internet of things in a quantum world. IEEE Communications Magazine, 55, 116–120.

    Google Scholar 

  114. LinkLabs: 3 Reasons Why IPv6 Is Important For the Internet Of Things. https://www.link-labs.com/blog/why-ipv6-is-important-for-internet-of-things. Accessed on 20 Nov, 2018.

  115. Abu-Mahfouz, A. M., & Hancke, G. P. (2016). An efficient distributed localization algorithm for wireless sensor networks: Based on smart reference-selection method. International Journal of Sensor Networks, 13, 94–111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mncedisi Bembe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 6 depicts all the acronyms used in this paper.

Table 6 Definitions of all acronyms used in the paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bembe, M., Abu-Mahfouz, A., Masonta, M. et al. A survey on low-power wide area networks for IoT applications. Telecommun Syst 71, 249–274 (2019). https://doi.org/10.1007/s11235-019-00557-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00557-9

Keywords

Navigation