Skip to main content
Log in

SDN-FHOR-DMM: a software defined network (SDN)-based fast handover with the optimal routing control method for distributed mobility management (DMM)

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Distributed mobility management (DMM), which is a promising mobility management protocol, is designed for flattening the network architecture to resolve the problems of scalability and reliability existed in mobile Internet. Although software defined network (SDN) has been applied to network-based mobility protocols to enhance the performance, the current network-based mobility management schemes still suffer the high signaling cost, handover delay and packet loss during the handover processing. In this paper, an software defined network (SDN)-based fast handover with the optimal routing control method for distributed mobility management (DMM) was proposed. SDN-FHOR-DMM can (i) let MNs have the higher chance of being in the predictive mode, in which the handover preparation processing can be finished before MN disconnecting from the current Mobility Anchor and Access Router’s (MAAR’s) domain and connecting with the new MAAR’s domain, (ii) support the optimal routing between MN and corresponding node (CN) through the help of the SDN Controller to have the optimal transmission path for the on-going packets from CN to MN to improve the handover performance. The performance analysis has shown that the proposed SDN-FHOR-DMM method has the better performance than the traditional DMM method and other method in terms of signaling overhead, handover latency, throughput and packets loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Shafi, M., et al. (2017). 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications, 35(6), 1201–1221.

    Google Scholar 

  2. Jeon, S., Figueiredo, S., Aguiar, R. L., & Choo, H. (2017). Distributed mobility management for the future mobile networks: A comprehensive analysis of key design options. IEEE Access, 5, 11423–11436.

    Google Scholar 

  3. Cominardi, L., Giust, F., Bernardos, C. J., & De La Oliva, A. (2017). Distributed mobility management solutions for next mobile network architectures. Computer Networks, 121, 124–136.

    Google Scholar 

  4. Koodli R. (2009). Mobile IPv6 Fast Handovers (No. RFC 5568).

  5. Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., & Patil, B. (2008). Proxy mobile ipv6 (No. RFC 5213).

  6. Liu, D., Zuniga, J. C., Seite, P., Chan, H., & Bernardos, C. J. (2015). Distributed mobility management: Current practices and gap analysis (No. RFC 7429).

  7. Peña Llerena, Y., Gondim, P. R., & Lloret, J. (2018). Improving throughput in DMM with mobile assisted flow mobility. Transactions on Emerging Telecommunications Technologies, 29(3), e3257.

    Google Scholar 

  8. Bernardos, C. J., De la Oliva, A., & Giust, F. (2017). A PMIPv6-based solution for distributed mobility management. Internet-Draft (Work in Progress), draft-bernardos-dmm-pmip, 2017.

  9. D’Angelo, G., Ferretti, S., & Ghini, V. (2018). Distributed hybrid simulation of the Internet of things and smart territories. Concurrency and Computation: Practice and Experience, 30(9), e4370, pp. 1–20.

  10. Ernest, P. P., Falowo, O. E., & Chan, H. A. (2016). Design and performance evaluation of distributed mobility management schemes for network mobility. Journal of Network and Computer Applications, 61, 46–58.

    Google Scholar 

  11. Huang, C. M., Dao, D. T., & Chiang, M. S. (2018). A bursty multi-node handover scheme for mobile internet using the partially distributed mobility management (BMH–DMM) architecture. Telecommunication Systems, 1–18.

  12. Balfaqih, M., Ismail, M., Nordin, R., Rahem, A. A., & Balfaqih, Z. (2017). Fast handover solution for network-based distributed mobility management in intelligent transportation systems. Telecommunication Systems, 64(2), 325–346.

    Google Scholar 

  13. Jeon, S., Kang, N., Corujo, D., & Aguiar, R. L. (2015). Comprehensive performance evaluation of distributed and dynamic mobility routing strategy. Computer Networks, 79, 53–67.

    Google Scholar 

  14. Guck, J. W., Van Bemten, A., Reisslein, M., & Kellerer, W. (2018). Unicast QoS routing algorithms for SDN: A comprehensive survey and performance evaluation. IEEE Communications Surveys & Tutorials, 20(1), 388–415.

    Google Scholar 

  15. Farris, I., Taleb, T., Khettab, Y., & Song, J. S. (2018). A survey on emerging SDN and NFV security mechanisms for IoT systems. IEEE Communications Surveys & Tutorials. https://doi.org/10.1109/comst.2018.2862350.

    Article  Google Scholar 

  16. Yin, X., Wang, L., & Jiang, S. (2018). A hierarchical mobility management scheme based on software defined networking. Peer-to-Peer Networking and Applications. https://doi.org/10.1007/s12083-017-0615-z.

    Article  Google Scholar 

  17. Sun, S., Han, L., Jin, X., & Han, S. (2017). NAPT-based mobility service for software defined networks. IEICE Transactions on Information and Systems, 100(5), 932–938.

    Google Scholar 

  18. Bradai, A., Benslimane, A., & Singh, K. D. (2015). Dynamic anchor points selection for mobility management in Software Defined Networks. Journal of Network and Computer Applications, 57, 1–11.

    Google Scholar 

  19. Yokota, H., Chowdhury, K., Koodli, R., Patil, B., & Xia, F. (2010). Fast handovers for proxy mobile IPv6 (No. RFC 5949).

  20. Chiang, M. S., & Huang, C. M. (2018). A backward fast handover control scheme for mobile internet (BFH-MIPv6). Journal of Internet Technology, 19(2), 359–367.

    Google Scholar 

  21. Chiang, M. S., Huang, C. M., Dao, D. T., & Pham, B. C. (2018). The backward fast media independent handover for proxy mobile IPv6 control scheme (BFMIH-PMIPV6) over heterogeneous wireless mobile networks. Journal of Information Science and Engineering, 34(3), 765–780.

    Google Scholar 

  22. Balfaqih, M., Ismail, M., Nordin, R., & Balfaqih, Z. A. (2017). 802.21-assisted distributed mobility management solution in vehicular networks. IEEE Access, 5, 9518–9532.

    Google Scholar 

  23. Wang, Y., & Bi, J. (2014, August). A solution for IP mobility support in software defined networks. In Proceeding of 2014 IEEE 23rd computer communication and networks (ICCCN) (pp. 1–8).

  24. Wang, Y., Bi, J., & Zhang, K. (2015). Design and implementation of a software-defined mobility architecture for IP networks. Mobile Networks and Applications, 20(1), 40–52.

    Google Scholar 

  25. Raza, S. M., Kim, D. S., & Choo, H. (2014, January). Leveraging PMIPv6 with SDN. In Proceedings of the ACM 8th international conference on ubiquitous information management and communication (ICUIMC), (pp. 1–8).

  26. Raza, S. M., Thorat, P., Challa, R., & Choo, H. (2017, January). On demand inter domain mobility in SDN based Proxy Mobile IPv6. In Proceedings of 2017 IEEE information networking (ICOIN) (pp. 194–199).

  27. Kim, Y. H., Lim, H. K., Kim, K. H., & Han, Y. H. (2017). A SDN-based distributed mobility management in LTE/EPC network. The Journal of Supercomputing, 73(7), 2919–2933.

    Google Scholar 

  28. Jabir, A. J., Shamala, S., Zuriati, Z., & Hamid, N. (2018). A comprehensive survey of the current trends and extensions for the proxy mobile IPv6 protocol. IEEE Systems Journal, 12(1), 1065–1081.

    Google Scholar 

  29. Wang, X., Lei, X., Fan, P., Hu, R. Q., & Horng, S. J. (2014). Cost analysis of movement-based location management in PCS networks: An embedded Markov chain approach. IEEE Transactions on Vehicular Technology, 63(4), 1886–1902.

    Google Scholar 

  30. Lee, J. H., Bonnin, J. M., You, I., & Chung, T. M. (2013). Comparative handover performance analysis of IPv6 mobility management protocols. IEEE Transactions on Industrial Electronics, 60(3), 1077–1088.

    Google Scholar 

  31. Pack, S., Shen, X. S., Mark, J. W., & Pan, J. (2007). Adaptive route optimization in hierarchical mobile IPv6 networks. IEEE Transactions on Mobile Computing, 8, 903–914.

    Google Scholar 

  32. Lee, J. H., Ernst, T., & Chilamkurti, N. (2012). Performance analysis of PMIPv6-based network mobility for intelligent transportation systems. IEEE Transactions on Vehicular Technology, 61(1), 74–85.

    Google Scholar 

  33. Network Simulator NS3, https://www.nsnam.org.

  34. Ammar, D., Begin, T., & Guerin-Lassous, I. (2011). A new tool for generating realistic internet traffic in ns-3. In Proceedings of the 4th ICST international conference on simulation tools and techniques, (pp. 81–83).

Download references

Acknowledgements

This research was supported by the Ministry Of Science and Technology (MOST) of the Republic of China, Taiwan, under the contract number MOST 107-2221-E-006-139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Ming Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CM., Dao, DT. & Chiang, MS. SDN-FHOR-DMM: a software defined network (SDN)-based fast handover with the optimal routing control method for distributed mobility management (DMM). Telecommun Syst 72, 157–177 (2019). https://doi.org/10.1007/s11235-019-00567-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00567-7

Keywords

Navigation