Skip to main content
Log in

LOS/NLOS channel identification for improved localization in wireless ultra-wideband networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The paper presents techniques for line-of-sight (LOS) and non-line-of-sight (NLOS) link identification in ultra-wideband wireless networks for the purpose of improving mobile positioning reliability in indoor and outdoor environments. Statistical hypothesis testing is applied by using specific parameters of the channel impulse response (CIR) related to skewness, kurtosis, root mean square delay and mean excess delay. Analytical multi-variate lognormal statistical models are developed for the joint probability densities of the CIR parameters which are found to have distinct features under LOS and NLOS conditions, and this is exploited in determining the nature of the propagation channels. Simulation results demonstrate that link identification with accuracy rates exceeding 95% are achievable for most types of environments, particularly when using combined amplitude and delay parameters. Reliable link identification is then integrated with time-of-arrival positioning, first using a low-complexity iterative maximum likelihood algorithm for localizing mobile nodes with LOS/NLOS links to a network of fixed access nodes. Numerical results show that reliable identification can greatly enhance mobile positioning accuracy, bringing the localization error to within 2 m with 90% probability. In the case of NLOS-dominated dynamically changing environments, another approach is developed based on the use of the unscented Kalman filter with integrated least-squares bias estimation and mitigation, and it is shown that accurate mobile tracking can be achieved, with performance approaching that of NLOS-free operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Benedetto, M., et al. (2006). UWB communication systems: A comprehensive overview. EURASIP Book Series on Signal Processing and Communications, 5, 5–25.

    Google Scholar 

  2. Sahinoglu, Z., Gezici, S., & Guvenc, I. (2008). Ultra-wideband positioning systems: Theoretical limits, ranging algorithms and protocols. Cambridge, CA: Cambridge University Press.

    Book  Google Scholar 

  3. Gustafsson, F., & Gunnarsson, F. (2005). Mobile positioning using wireless networks: Possibilities, fundamental limitations based on available wireless network measurements. IEEE Signal Processing Magazine, 22(4), 41–53.

    Article  Google Scholar 

  4. Sayed, A., Tarighat, A., & Khajehnouri, N. (2005). Network-based wireless location. IEEE Signal Processing Magazine, 22(7), 24–40.

    Article  Google Scholar 

  5. Soganci, H., Gezici, S., & Poor, H. (2011). Accurate positioning in ultra-wideband systems. IEEE Wireless Communications, 18(2), 19–27.

    Article  Google Scholar 

  6. Molisch, A. (2009). Ultra-wide-band propagation channels. Proceedings of the IEEE, 97(2), 353–371.

    Article  Google Scholar 

  7. Guvenc, I., & Chong, C. (2009). A Survey on TOA-based wireless localization and NLOS mitigation techniques. IEEE Communications Surveys & Tutorials, 11(3), 107–124.

    Article  Google Scholar 

  8. Khodjaev, J., Park, Y., & Malik, A. (2010). Survey of NLOS identification and error mitigation problems in UWB-based positioning algorithms for dense environments. Annals of Telecom, 65, 301–311.

    Article  Google Scholar 

  9. Abbasi, A., & Liu, H. (2014). Improved line-of-sight/non-line-of-sight classification methods for pulsed ultra-wideband localization. IET Communications, 8(5), 680–688.

    Article  Google Scholar 

  10. Venkatesh, S., & Buehrer, R. (2012). Non-line-of-sight identification in ultra-wideband systems based on received signal statistics. IET Microwaves, Antennas and Propagation, 1(6), 1120–1130.

    Article  Google Scholar 

  11. Zhang, J., Salmi, J., & Lohan, E. S. (2013). Analysis of Kurtosis-based LOS/NLOS identification using indoor MIMO channel measurements. IEEE Transactions on Vehicular Technology, 62(7), 2871–2874.

    Article  Google Scholar 

  12. Mucchi, L., & Marcocci, P. (2009). A new parameter for UWB indoor channel profile identification. IEEE Transactions on Wireless Communications, 8(8), 1597–1602.

    Article  Google Scholar 

  13. Marano, S., Gifford, W., Wymeersch, H., & Win, M. (2010). NLOS identification and mitigation for localization based on UWB experimental data. IEEE Journal on Selected Areas in Communications, 28(7), 1026–1035.

    Article  Google Scholar 

  14. Muqaibel, A., Landolsi, M. A., & Mahmoud, N. (2013). Practical evaluation of NLOS/LOS parametric classification in UWB channels. In Proceedings of the International Conference on Communications, Signal Processing, and their Applications. https://doi.org/10.1109/iccspa.2013.6487304.

  15. Landolsi, M. A., & Almutairi, A. (2017). Reliable line-of-sight and non-line-of-sight propagation channel identification in ultra-wideband wireless networks. In Proceedings of the International Conference on Communications, Antennas and Propagation (pp. 23–28).

  16. Yin, F., Fritsche, C., Gustafsson, F., & Zoubir, A. (2013). TOA-based robust wireless geolocation and Cramér–Rao lower bound in harsh LOS/NLOS environments. IEEE Transactions on Signal Processing, 61(9), 2243–2255.

    Article  Google Scholar 

  17. Guvenc, I., Chong, C., Watanabe, F., & Inomura, H. (2008). NLOS identification and weighted least square localization for UWB systems using multipath channel statistics. EURASIP Journal on Advances in Signal Processing, vol.2008, Article ID 271984.

  18. Meng, Q. (2014). An improved RWGH algorithm for NLOS mitigation in wireless sensor networks. In Proceedings of the 4th international conference on electronics, communications and networks (Vol. IV, pp. 319–323).

  19. Al-Jazzar, S., Jr, J., Caffery, J., & You, H. (2007). Scattering-model-based methods for TOA location in NLOS environments. IEEE Transactions on Vehicular Technology, 56(2), 583–593.

    Article  Google Scholar 

  20. Chan, Y., Yau, C., & Ching, P. (2006). Time-of-arrival based localization under NLOS conditions. IEEE Transactions on Vehicular Technology, 55(1), 17–24.

    Article  Google Scholar 

  21. Vin, I., et al. (2014). Multipath component distance-based fingerprinting technique for non-cooperative outdoor localization in NLOS scenarios. IEEE Transactions on Antennas and Propagation, 62(9), 4794–4798.

    Article  Google Scholar 

  22. Wang, Z., & Zekavat, S. (2012). Omnidirectional mobile NLOS identification and localization via multiple cooperative nodes. IEEE Transactions on Mobile Computing, 11(12), 2047–2059.

    Article  Google Scholar 

  23. Xu, W., et al. (2015). Distributed localization of an RF target in NLOS environments. IEEE Journal on Selected Areas in Communications, 33(7), 1317–1330.

    Article  Google Scholar 

  24. Chan, Y. T., Hang, H. Y. C., & Ching, P. C. (2006). Exact and approximate maximum likelihood localization algorithms. IEEE Transactions on Vehicular Technology, 55(1), 10–16.

    Article  Google Scholar 

  25. Kegen, Y., & Dutkiewicz, E. (2013). NLOS identification and mitigation for mobile tracking. IEEE Transactions on Aerospace and Electronic Systems, 49(3), 1438–1452.

    Article  Google Scholar 

  26. Ke, W., & Wu, L. (2011). Mobile location with NLOS identification and mitigation based on modified Kalman filtering. Sensors, 11(2), 1641–1656.

    Article  Google Scholar 

  27. Chen, B. S., Yang, C. Y., Liao, F. K., & Liao, J. F. (2009). Mobile location estimator in a rough wireless environment using extended Kalman-based IMM and data fusion. IEEE Transactions on Vehicular Technology, 58(3), 1157–1169.

    Article  Google Scholar 

  28. Julier, S., & Uhlmann, J. (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92, 401–422.

    Article  Google Scholar 

  29. Kim, W., Lee, J. G., & Jee, G. I. (2006). The interior-point method for an optimal treatment of bias in trilateration location. IEEE Transactions on Vehicular Technology, 55(4), 1291–1301.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Kuwait University, Research Sector, Kuwait, under Project No. EE01/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Adnan Landolsi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Unscented Kalman filter processing steps

Appendix A: Unscented Kalman filter processing steps

The UKF uses a set of 2n + 1 sample vectors (known as sigma points) that are propagated through the nonlinear system transformation and used to recursively estimate the state vector [28]. Following initialization, the UKF estimator alternates between two successive steps: prediction and filtering.

The system is defined for an n-dimensional state vector \( \varvec{X}_{k} \) at instant k, with transition model: \( \varvec{X}_{k + 1} = \varvec{F}\left( {\varvec{X}_{k} } \right) + \varvec{v}_{k} , \) and measurement model: \( \varvec{Y}_{k} = \varvec{h}\left( {\varvec{X}_{k} } \right) + \varvec{n}_{k} \) where \( \varvec{F}\left( \cdot \right) \) and \( \varvec{h} \)(·) are the state transition and measurement functions, and \( \varvec{v}_{k} \) and \( \varvec{n}_{k} \) denote state and measurement noise terms, respectively.

Prediction Step:

At each sample time, a matrix is formed with a concatenation of a set of (2n + 1) sample vectors (sigma points) \( \varvec{\xi}_{k|k} = \left[ {\begin{array}{*{20}c} {\varvec{\xi}_{1, k|k} } & {\varvec{\xi}_{2, k|k} } & {\varvec{\xi}_{3, k|k} } & \ldots & {\varvec{\xi}_{2n + 1, k|k} } \\ \end{array} } \right] \) calculated around the filtered state estimate \( \hat{\varvec{X}}_{k|k} \) according to:

$$ \varvec{\xi}_{k|k} = \left[ {\begin{array}{*{20}c} {\hat{\varvec{X}}_{k|k} } & {\hat{\varvec{X}}_{k|k} +\varvec{\zeta}_{1} } \\ \end{array} \begin{array}{*{20}c} {\hat{\varvec{X}}_{k|k} -\varvec{\zeta}_{1} } & \ldots & {\hat{\varvec{X}}_{k|k} +\varvec{\zeta}_{n} \hat{\varvec{X}}_{k|k} -\varvec{\zeta}_{n} } \\ \end{array} } \right] $$
(A.1)

where \( \varvec{\zeta}_{i} \) is the ith column \( \left( {i = 1,2, \ldots ,n} \right) \) of the matrix \( {\mathbf{B}} \) given by:

$$ {\mathbf{B}} = \sqrt {\left( {n + \lambda } \right){\mathbf{P}}_{XX,k|k} } $$
(A.2)

with \( \lambda = n \times \left( {\alpha^{2} - 1} \right) \) for a parameter \( 0 < \alpha < 1 \), and \( {\mathbf{P}}_{XX,k|k} \) denoting the current filtered state covariance matrix.

The matrix \( {\mathbf{B}} \) can be computed by many techniques such as Cholesky factorization, thus giving:

$$ {\mathbf{BB}}^{\text{T}} = \sqrt {\left( {n + \lambda } \right){\mathbf{P}}_{XX,k|k} } \left( {\sqrt {\left( {n + \lambda } \right){\mathbf{P}}_{XX,k|k} } } \right)^{T} = \left( {n + \lambda } \right){\mathbf{P}}_{XX,k|k} $$
(A.3)

Substituting the sigma points in the transformation \( \varvec{F} \)(·), we get:

$$ \varvec{\xi}_{k + 1|k} = \left[ {\begin{array}{*{20}c} {\varvec{F}(\hat{\varvec{X}}_{k|k} )} & {\varvec{F}\left( {\hat{\varvec{X}}_{k|k} +\varvec{\zeta}_{1} } \right) } \\ \end{array} \begin{array}{*{20}c} {\varvec{F}(\hat{\varvec{X}}_{k|k} -\varvec{\zeta}_{1} )} & \ldots & {\varvec{F}(\hat{\varvec{X}}_{k|k} +\varvec{\zeta}_{n} ) \varvec{F}(\hat{\varvec{X}}_{k|k} -\varvec{\zeta}_{n} )} \\ \end{array} } \right] $$
(A.4)

The predicted state estimate is then found by taking a weighted average of the elements in \( \varvec{\chi}_{k + 1|k} \) as follows:

$$ \hat{\varvec{X}}_{k + 1|k} = \mathop \sum \limits_{j = 1}^{2n + 1} w_{j}^{m}\varvec{\xi}_{j, k + 1|k} $$
(A.5)

The weights used in computing \( \hat{\varvec{X}}_{k + 1|k} \) are given by:

$$ w_{j}^{m} = \left\{ {\begin{array}{*{20}l} {\frac{\lambda }{n + \lambda }} \hfill & {j = 1} \hfill \\ {\frac{1}{{2\left( {n + \lambda } \right)}}} \hfill & {j = 2, 3, \ldots ,2n + 1} \hfill \\ \end{array} } \right. $$
(A.6)

Afterwards, the covariance matrix \( {\mathbf{P}}_{XX,k + 1|k} \) is calculated as follows:

$$ {\mathbf{P}}_{XX,k + 1|k} = {\varvec{\Gamma}}_{k} {\mathbf{Q\varGamma }}_{k}^{T} + \mathop \sum \limits_{j = 1}^{2n + 1} w_{j}^{c} \left( {\varvec{\xi}_{j, k + 1|k} - \hat{\varvec{X}}_{k + 1|k} } \right)\left( {\varvec{\xi}_{j, k + 1|k} - \hat{\varvec{X}}_{k + 1|k} } \right)^{T} $$
(A.7)

The weights used in computing \( {\mathbf{P}}_{XX,k + 1|k} \) are given by:

$$ w_{j}^{c} = \left\{ {\begin{array}{*{20}l} {\frac{\lambda }{n + \lambda } + \left( {1 + \beta - \alpha^{2} } \right)} \hfill & {j = 1} \hfill \\ {\frac{1}{{2\left( {n + \lambda } \right)}}} \hfill & {j = 2, 3, \ldots ,2n + 1} \hfill \\ \end{array} } \right. $$
(A.8)

where \( \beta \) is a parameter (set around 2). Similarly, the elements of \( \varvec{\xi}_{k + 1|k} \) are substituted in the function \( \varvec{h} \)(·), giving the matrix \( {\varvec{\uppsi}}_{k + 1|k} \) specified as:

$$ {\varvec{\uppsi}}_{k + 1|k} = \left[ {\begin{array}{*{20}c} {\varvec{\psi}_{1, k + 1|k} } & {\varvec{\psi}_{2, k + 1|k} } & {\varvec{\psi}_{3, k + 1|k} } & \ldots & {\varvec{\psi}_{2n + 1, k + 1|k} } \\ \end{array} } \right] $$
(A.9)

where:

$$ \varvec{\psi}_{j, k + 1|k} = \varvec{h}\left( {\varvec{\xi}_{j, k + 1|k} } \right), j = 1,2, \ldots , 2n + 1 $$
(A.10)

The predicted output is then found by taking the weighted average of the elements in \( \varvec{\psi}_{k + 1|k} \) as follows:

$$ \hat{\varvec{Y}}_{k + 1|k} = \mathop \sum \limits_{j = 1}^{2n + 1} w_{j}^{m}\varvec{\psi}_{j, k + 1|k} $$
(A.11)

Afterwards, the predicted output covariance matrix \( {\mathbf{P}}_{YY,k + 1|k} \) is found as follows:

$$ {\mathbf{P}}_{YY,k + 1|k} = {\mathbf{R}} + \mathop \sum \limits_{j = 1}^{2n + 1} w_{j}^{c} \left( {\varvec{\psi}_{j, k + 1|k} - \hat{\varvec{Y}}_{k + 1|k} } \right)\left( {\varvec{\psi}_{j, k + 1|k} - \hat{\varvec{Y}}_{k + 1|k} } \right)^{T} $$
(A.12)

On the other hand, the cross-covariance matrix \( {\mathbf{P}}_{XY,k + 1|k} \) is obtained by:

$$ {\mathbf{P}}_{XY,k + 1|k} = \mathop \sum \limits_{j = 1}^{2n + 1} w_{j}^{c} \left( {\varvec{\xi}_{j, k + 1|k} - \hat{\varvec{X}}_{k + 1|k} } \right)\left( {\varvec{\psi}_{j, k + 1|k} - \hat{\varvec{Y}}_{k + 1|k} } \right)^{T} $$
(A.13)

Filtering Step:

The filtered estimate can be obtained as:

$$ \hat{\varvec{X}}_{k + 1|k + 1} = \hat{\varvec{X}}_{k + 1|k} + \varvec{K}_{k + 1} \left( {\varvec{Y}_{k + 1} - \hat{\varvec{Y}}_{k + 1|k} } \right) $$
(A.14)

where the Kalman gain \( \varvec{K}_{k + 1} \) is given by:

$$ \varvec{K}_{k + 1} = {\mathbf{P}}_{XY,k + 1|k} {\mathbf{P}}_{YY,k + 1|k}^{ - 1} $$
(A.15)

Finally, the updated filtered covariance matrix is obtained as:

$$ {\mathbf{P}}_{XX,k + 1|k + 1} = {\mathbf{P}}_{XX,k + 1|k} - \varvec{K}_{k + 1} {\mathbf{P}}_{YY,k + 1|k} \varvec{K}_{k + 1}^{T} . $$
(A.16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landolsi, M.A., Almutairi, A.F. & Kourah, M.A. LOS/NLOS channel identification for improved localization in wireless ultra-wideband networks. Telecommun Syst 72, 441–456 (2019). https://doi.org/10.1007/s11235-019-00572-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00572-w

Keywords

Navigation