Skip to main content
Log in

Performance analysis of receive diversity under time-varying and spatially correlated channels using partial CSI

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, a single input multiple output system is considered with L receive antennas and the underlying channels are assumed to be time varying with temporal correlation coefficient a and spatially correlated with correlation coefficient \(\rho \). Further, the channel is assumed to be identically distributed using Rayleigh fading channels and characterized by first order autoregressive model. For the detection, we assume partial channel state information (CSI) available at the receiver. The partial CSI is in the form of a known preamble (one symbol) only before beginning of a frame of size N symbols. Further, the preamble is imperfectly known with a variance of error \(\sigma _e^2\). For the assumed system, closed form expressions of symbol error rate (SER) are derived for M-PSK and M-QAM constellations under the compound effect of spatially correlated channels, temporally correlated channels and partial CSI at the Receiver. The derived expressions are functions of average SNR per symbol, \(\rho \), a, \(\sigma _e^2\), N, L and modulation order M. Further, these expressions are reduced for some special cases and compared with prevailing results in literature. The analytical expressions are also validated by comparing them with the corresponding simulation results. The derived expressions are very useful to select N, L and M to overcome the deterioration in SER due to adverse effects of \(\rho \), a and \(\sigma _e^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abeysinghe, J.R., & Roberts, J.A. (1995). Bit error rate performance of antenna diversity systems with channel correlation. In Proceedings of GLOBECOM.

  2. Gomadam, K. S., & Jafar, S. A. (2007). Modulation and detection for simple receivers in rapidly time varying channels. IEEE Transactions on Communications, 55, 529–539.

    Article  Google Scholar 

  3. Chen, C. Y., Sezgin, A., Cioffi, J. M., & Paulraj, A. (2008). Antenna selection in space-time block coded systems: Performance analysis and low-complexity algorithm. IEEE Transactions on Signal Processing, 56(7), 3303–3314.

    Article  Google Scholar 

  4. Mi, D., Dianati, M., Zhang, L., Muhaidat, S., & Tafazolli, R. (2017). Massive MIMO performance with imperfect channel reciprocity and channel estimation error. IEEE Transactions on Communications, 65(9), 3734–3749.

    Article  Google Scholar 

  5. Yu, X., Xu, W., Leung, S. H., & Wang, J. (2018). Unified performance analysis of transmit antenna selection with OSTBC and imperfect CSI over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 67(1), 494–508.

    Article  Google Scholar 

  6. Anvar, S. M. M., Khanmohammadi, S., & Museviniya., Javad. (2015). Game theoretic power allocation for fading MIMO multiple access channels with imperfect CSIR. Telecommunication Systems, 61(4), 875–886.

    Google Scholar 

  7. Chiani, M., Win, M. Z., & Zanella, A. (2003). On the capacity of spatially correlated MIMO Rayleigh-fading channels. IEEE Transactions on Information Theory, 49(10), 2363–2371.

    Article  Google Scholar 

  8. Jacobs, L., & Moeneclaey, M. (2013). Accurate closed-form approximation of BER for OSTBCs with estimated CSI on spatially correlated Rayleigh fading MIMO channels. IEEE Communication Letters, 17(3), 533–536.

    Article  Google Scholar 

  9. Hajjaj, M., Chainbi, W., & Bouallegue, R. (2016). Low-rank channel estimation for MIMO MB-OFDM UWB system over spatially correlated channel. IEEE Communications Letters, 5(1), 48–51.

    Article  Google Scholar 

  10. Xu, Z., Sfar, S., & Blum, R. S. (2009). Analysis of MIMO systems with receive antenna selection in spatially correlated Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 58(1), 251–262.

    Article  Google Scholar 

  11. Trivedi, Y. N., & Chaturvedi, A. K. (2007). Application of Receive Diversity to Rapidly Time Varying Channels with Partial Knowledge at the Receiver. Mumbai: NCC, IIT.

    Google Scholar 

  12. Trivedi, Y. N., & Chaturvedi, A. K. (2009). Detection in Time-Varying Wireless Channels Using Partial Channel State Information. Guwahati: NCC, IIT.

    Google Scholar 

  13. Tsatsanis, M. K., & Xu, Z. (2000). Pilot symbol assisted modulation in frequency selective fading wireless channels. IEEE Transactions on Signal Processing, 48(8), 2353–2365.

    Article  Google Scholar 

  14. Jarinová, D. (2013). On autoregressive model order for long-range prediction of fast fading wireless channel. Telecommunication Systems, 52(3), 1533–1539.

    Article  Google Scholar 

  15. Simon, M . K., & Alouini, M . S. (2000). Digital Communication over Fading Channels - A Unified Approach to Performance Analysis. Hoboken: Wiley.

    Book  Google Scholar 

  16. Perahia, E., & Pottie, G. J. (1994). On diversity combining for correlated slowly flat-fading Rayleigh channels. In Proceedings of ICC/SUPERCOMM.

  17. Jakes, W. C., & Cox, D. C. (Eds.). (1994). Microwave Mobile Communications. New York: Wiley-IEEE Press.

    Google Scholar 

  18. Kulkarni, M., Choudhary, L., Kumbhani, B., & Kshetrimayum, R. S. (2014). Performance analysis comparison of transmit antenna selection with maximum ratio combining and orthogonal space time block codes in equicorrelated Rayleigh fading multiple input multiple output channels. IET Communications, 8(10), 1850–1858.

    Article  Google Scholar 

  19. Proakis, J . G. (2001). Digital Communications (4th ed.). New York: McGraw Hill.

    Google Scholar 

  20. WolframAlpha Online Integral Calculator. [Online]. www.wolframalpha.com/calculators/integral-calculator.

  21. Gradshteyn, I . S., & Ryzhik, I . M. (2007). Table of Integrals, Series, and Products (7th ed.). Cambridge: Academic press.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Saket Buch, Space Applications Centre, ISRO for his critical review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhaval J. Upadhyay.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix-A

Symbol error rate (\(P_{s,k,PSK}\)) at \(k{\mathrm{th}}\) symbol position for M-PSK modulation scheme is defined, in terms of MGF as described in section-III, as follows:

$$\begin{aligned} P_{s,k,PSK}&= \frac{1}{2\pi } \int _{\mu }^{\infty } \frac{M(-g_{PSK}y)}{y\sqrt{y-1}} dy \end{aligned}$$

where, \(\mu = cosec^2(\frac{\pi (M-1)}{M})\) and \(g_{PSK} = sin^2(\pi /M)\).

$$\begin{aligned} P_{s,k,PSK}&= \int _{\mu }^{\infty } \frac{y^{-1}(1+\bar{\gamma }_kg_{PSK}y(1-\rho ))^{1-L}dy}{2\pi \sqrt{y-1}(1+\bar{\gamma }_kg_{PSK}y(1-\rho (1-L)))}\\&= \int _{\mu }^{\infty } \Bigg [ \frac{1}{2\pi y\sqrt{y-1}(1+\bar{\gamma }_kg_{PSK}y(1-\rho ))^{L-1}} \\&\quad -\frac{(1+\bar{\gamma }_kg_{PSK}y(1-\rho ))^{1-L}}{\sqrt{y-1}(1+\bar{\gamma }_kg_{PSK}y(1-\rho (1-L)))} \\&\quad \quad \bar{\gamma }_kg_{PSK}(1-\rho (1-L))\Bigg ] dy \\&= I_1 - I_2 \end{aligned}$$

Integration of \(I_1\) and \(I_2\) are derived separately to find out \(P_{s,k,PSK}\) at \(k{\mathrm{th}}\) symbol for M-PSK modulation. Generalized expression of symbol error rate for BPSK (\(M=2\)) and M-PSK (\(M>2\)) signals are derived separately using proposed scheme; as, it was difficult to derive the generalized expression for symbol error rate for \(M\ge 2\).

Case-1: For M-PSK modulation (\(M>2\)),

$$\begin{aligned} I_1&= \frac{1}{2\pi } \int _{\mu }^{\infty } \Bigg [ \frac{1}{y\sqrt{y-1}(1+\bar{\gamma }_kg_{PSK}y(1-\rho ))^{L-1}} \Bigg ] dy \end{aligned}$$

using [20], above integration is reduced to following term,

$$\begin{aligned} I_1&= \frac{(\bar{\gamma }_kg_{PSK}(1-\rho ))^{1-L}}{2\pi } \Bigg [ 2\Bigg (\frac{1}{\bar{\gamma }_kg_{PSK}(1-\rho )}+1\Bigg )^{1-L} \\&\quad \sqrt{y-1}{F}_1(\frac{1}{2};L-1,1;\frac{3}{2}; -\frac{y-1}{1+\frac{1}{\bar{\gamma }_kg_{PSK}(1-\rho )}}, 1-y) \Bigg ]^\infty _{\mu } \\ I_1&= -\frac{\sqrt{\mu -1}}{\pi (\bar{\gamma }_kg_{PSK}(1-\rho )+1)^{L-1}} {F}_1\Bigg (\frac{1}{2};L-1,1;\frac{3}{2}; \\&\quad \frac{1-\mu }{1+\frac{1}{\bar{\gamma _k}g_{PSK}(1-\rho )}},1-\mu \Bigg ) \\ I_2&= \frac{1}{2\pi } \int _{\mu }^{\infty } \Bigg [\frac{\bar{\gamma }_kg_{PSK}(1-\rho (1-L))}{\sqrt{y-1}(1+\bar{\gamma }_kg_{PSK}y(1-\rho (1-L)))} \\&\quad (1+\bar{\gamma }_kg_{PSK}y(1-\rho ))^{1-L} \Bigg ] dy \\&= \frac{\bar{\gamma }_kg_{PSK}(1-\rho (1-L))}{2\pi } \\&\quad \int _{\mu -1}^{\infty } \Bigg [\frac{(1+\bar{\gamma }_kg_{PSK}(1+t)(1-\rho ))^{1-L}}{\sqrt{t}(1+\bar{\gamma }_kg_{PSK}(1+t)(1-\rho (1-L)))}\Bigg ]dt \\&= \frac{\bar{\gamma }_kg_{PSK}(1-\rho (1-L))}{2\pi } \\&\quad \int _{\mu -1}^{\infty } \Bigg [\frac{(1+\bar{\gamma }_kg_{PSK}(1-\rho )+\bar{\gamma }_kg_{PSK}t(1-\rho ))^{1-L}}{\sqrt{t}} \\&\quad \frac{dt}{(1+\bar{\gamma }_kg_{PSK}(1-\rho (1-L)) + \bar{\gamma }_kg_{PSK}t(1-\rho (1-M)))} \Bigg ] \\&= \frac{(\bar{\gamma }_kg_{PSK}(1-\rho ))^{1-L}}{2\pi } \int _{\mu -1}^{\infty } \frac{(\beta +t)^{1-L}}{\sqrt{t}(\alpha +t)} dt \\&\quad \Bigg [where, ~\alpha =\frac{1+\bar{\gamma }_kg_{PSK}(1-\rho (1-L))}{\bar{\gamma }_kg_{PSK}(1-\rho (1-L))} ~and \\&~\beta =\frac{1+\bar{\gamma }_kg_{PSK}(1-\rho )}{\bar{\gamma }_kg_{PSK}(1-\rho )} \Bigg ] \end{aligned}$$

using [20], above integration is reduced to following term,

$$\begin{aligned} I_2&= \frac{(\bar{\gamma }_kg_{PSK}(1-\rho ))^{1-L}}{2\pi } \Bigg [ \frac{2\sqrt{t}}{\alpha \beta ^L} \Bigg ( (\beta -\alpha ){F}_1\Bigg (\frac{1}{2};L,1; \\&\quad \frac{3}{2};-\frac{t}{\beta },-\frac{t}{\alpha }\Bigg ) + \alpha _2{F}_1\Bigg (\frac{1}{2},L;\frac{3}{2};-\frac{t}{\beta }\Bigg ) \Bigg ) \Bigg ]^\infty _{\mu -1} \\ I_2&= \frac{-\sqrt{\mu -1}}{\pi (\bar{\gamma }_kg_{PSK}(1-\rho ))^{L-1}\alpha \beta ^L} \Bigg [ (\beta -\alpha ) {F}_1\Bigg (\frac{1}{2};L,1; \\&\quad \frac{3}{2};\frac{1-\mu }{\beta },\frac{1-\mu }{\alpha }\Bigg )+\alpha _2{F}_1\Bigg (\frac{1}{2},L;\frac{3}{2};-\frac{\mu -1}{\beta }\Bigg ) \Bigg ] \end{aligned}$$

So, symbol error rate \(P_{s,k,PSK}\) for M-PSK modulation (\(M>2\)) can be written as

$$\begin{aligned}&P_{s,k,PSK}= \frac{\sqrt{\mu -1}}{\pi (\bar{\gamma }_kg_{PSK}(1-\rho ))^{L-1}\alpha \beta ^L} \Bigg [ (\beta -\alpha ) \\&\qquad {F}_1\Bigg (\frac{1}{2};L,1;\frac{3}{2};\frac{1-\mu }{\beta },\frac{1-\mu }{\alpha }\Bigg )\\&\qquad \qquad \quad \quad +\alpha _2{F}_1\Bigg (\frac{1}{2},L;\frac{3}{2};-\frac{\mu -1}{\beta }\Bigg ) \Bigg ] \\&\qquad \qquad \quad \quad - \frac{\sqrt{\mu -1}}{\pi (\bar{\gamma }_kg_{PSK}(1-\rho )+1)^{L-1}} \\&\quad \quad {F}_1\Bigg (\frac{1}{2};L-1,1; \frac{3}{2}; \frac{1-\mu }{1+\frac{1}{\bar{\gamma _k}g_{PSK}(1-\rho )}},1-\mu \Bigg ). \end{aligned}$$

Case-2: For BPSK modulation (\(M=2\)),

$$\begin{aligned} I_1&= \frac{1}{2\pi } \int _{1}^{\infty } \Bigg [ \frac{(1+\bar{\gamma }_ky(1-\rho ))^{1-L}}{y\sqrt{y-1}} \Bigg ] dy\\&= \frac{(\bar{\gamma }_k(1-\rho ))^{1-L}}{2\pi } \int _{1}^{\infty } \Bigg [\frac{(\frac{1}{\bar{\gamma }_k(1-\rho ))}+ y)^{1-L}}{y\sqrt{y-1}} \Bigg ] dy \end{aligned}$$

Above integral term is solved using [eq.(3.197), [21]],

$$\begin{aligned} I_1&= \frac{(\bar{\gamma }_k(1-\rho ))^{1-L}}{2\pi } {B}\Bigg (L-\frac{1}{2}, \frac{1}{2}\Bigg ){}_2{F}_1\Bigg (L-1, \\&\quad L-\frac{1}{2}; L; -\frac{1}{\bar{\gamma }_k(1-\rho )}\Bigg ) \\ I_2&= \int _{1}^{\infty } \Bigg [\frac{\bar{\gamma }_k(1-\rho (1-L))(1+\bar{\gamma }_ky(1-\rho ))^{1-L}}{2\pi \sqrt{y-1}(1+\bar{\gamma }_ky(1-\rho (1-L)))} \Bigg ]dy \\&= \frac{\bar{\gamma }_k(1-\rho (1-L))}{2\pi } \\&\quad \int _{0}^{\infty } \Bigg [\frac{(1+\bar{\gamma }_k(1+t)(1-\rho ))^{1-L}}{\sqrt{t}(1+\bar{\gamma }_k(1+t)(1-\rho (1-L)))}\Bigg ]dt \\&= \frac{1}{2\pi (\bar{\gamma }_k(1-\rho ))^{L-1}} \int _{0}^{\infty } t^{-\frac{1}{2}} \Bigg (\frac{1+\bar{\gamma }_k(1-\rho )}{\bar{\gamma }_k(1-\rho )} + t\Bigg )^{1-L} \\&\quad \Bigg (t+\frac{1+\bar{\gamma }_k(1-\rho (1-L))}{\bar{\gamma }_k(1-\rho (1-L)}\Bigg )^{-1} dt \end{aligned}$$

Above integral term is solved using [eq.(3.197),[21]],

$$\begin{aligned} I_2&=\frac{(1+\bar{\gamma }_k(1-\rho ))^{1-L}(\bar{\gamma }_k(1-\rho (1-L)))^{\frac{1}{2}}}{2\pi (1+\bar{\gamma }_k(1-\rho (1-L)))^{\frac{1}{2}}} {B}\Bigg (\frac{1}{2},L-\frac{1}{2}\Bigg ) \\&\quad _2{F}_1\Bigg (L-1, \frac{1}{2}; L;1-\frac{(1+\bar{\gamma }_k(1-\rho (1-L)))(1-\rho )}{(1-\rho (1-L))(1+\bar{\gamma }_k(1-\rho ))}\Bigg ) \end{aligned}$$

So, Symbol error rate \(P_{s,k,PSK}\) for BPSK modulation scheme can be written as

$$\begin{aligned}&P_{s,k,PSK}= \frac{(\bar{\gamma }_k(1-\rho ))^{1-L}}{2\pi } {B}\Bigg (L-\frac{1}{2}, \frac{1}{2}\Bigg ) \\&\quad _2{F}_1\Bigg (L-1, L-\frac{1}{2}; L; -\frac{1}{\bar{\gamma }_k(1-\rho )}\Bigg ) - \\&\quad \frac{(1+\bar{\gamma }_k(1-\rho ))^{1-L}(\bar{\gamma }_k(1-\rho (1-L)))^{\frac{1}{2}}}{2\pi (1+\bar{\gamma }_k(1-\rho (1-L)))^{\frac{1}{2}}} {B}\Bigg (\frac{1}{2},L-\frac{1}{2}\Bigg ) \\&\quad _2{F}_1\Bigg (L-1, \frac{1}{2}; L;1-\frac{(1+\bar{\gamma }_k(1-\rho (1-L)))(1-\rho )}{(1-\rho (1-L))(1+\bar{\gamma }_k(1-\rho ))}\Bigg ). \end{aligned}$$

Appendix-B

Symbol error rate (\(P_{s,k,QAM}\)) at \(k{\mathrm{th}}\) symbol position for M-QAM modulation scheme is defined, in terms of MGF as described in section-III, as follows:

$$\begin{aligned} P_{s,k,QAM}&= \frac{2}{\pi } \Bigg (1-\frac{1}{\sqrt{M}} \Bigg ) \int _{1}^{\infty } \frac{M(-g_{QAM}y)}{y\sqrt{y-1}} dy~ \\&\quad -\frac{2}{\pi } \Bigg (1-\frac{1}{\sqrt{M}} \Bigg )^2 \int _{2}^{\infty } \frac{M(-g_{QAM}y)}{y\sqrt{y-1}} dy, \\&= I_1 - I_2 \end{aligned}$$

where, \(g_{{ QAM}} = 3/2(M-1)\). Integration of \(I_1\) and \(I_2\) are derived separately to find out \(P_{s,k,QAM}\) at \(k{\mathrm{th}}\) symbol for M-QAM modulation.

$$\begin{aligned} I_1&= \int _{1}^{\infty } \frac{\frac{2}{\pi }(1-\frac{1}{\sqrt{M}})(1+\bar{\gamma }_kg_{QAM}y(1-\rho ))^{1-L}}{y\sqrt{y-1}(1+\bar{\gamma }_kg_{QAM}y(1-\rho (1-L)))} dy \\&= \frac{2}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg ) \int _{1}^{\infty } \Bigg [ \frac{(1+\bar{\gamma }_kg_{QAM}y(1-\rho ))^{1-L}}{y\sqrt{y-1}} \\&\quad -\frac{\bar{\gamma }_kg_{QAM}(1-\rho (1-L))(1+\bar{\gamma }_kg_{QAM}y(1-\rho ))^{1-L}}{\sqrt{y-1}(1+\bar{\gamma }_kg_{QAM}y(1-\rho (1-L)))} \Bigg ] dy \\&=I_{11} - I_{12} \end{aligned}$$

Integration of \(I_{11}\) and \(I_{12}\) are derived separately to find out solution of \(I_1\).

$$\begin{aligned} I_{11}&= \frac{2}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg ) \int _{1}^{\infty } \Bigg [ \frac{(1+\bar{\gamma }_kg_{QAM}y(1-\rho ))^{1-L}}{y\sqrt{y-1}} \Bigg ]dy \end{aligned}$$

Above integral term is solved using [eq.(3.197),[21]],

$$\begin{aligned} I_{11}&= \frac{2}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg ) \frac{{B}(L-\frac{1}{2},\frac{1}{2})}{(\bar{\gamma }_kg_{QAM}(1-\rho ))^{L-1}} \\&\quad _2F_1\Bigg (L-1,L-\frac{1}{2};L;\frac{-1}{\bar{\gamma }_kg_{QAM}(1-\rho )}\Bigg ) \\ I_{12}&= \frac{2}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg ) \int _{1}^{\infty } \Bigg [ \frac{\bar{\gamma }_kg_{QAM}(1-\rho (1-L))}{\sqrt{y-1}} \\&\quad \frac{(1+\bar{\gamma }_kg_{QAM}y(1-\rho ))^{1-L}}{(1+\bar{\gamma }_kg_{QAM}y(1-\rho (1-L)))} \Bigg ] dy \\&= \frac{2}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg )(\bar{\gamma }_kg_{QAM}(1-\rho ))^{1-L} \int _{0}^{\infty } \Bigg [ t^{-\frac{1}{2}} \\&\quad \Bigg (t+\frac{1+\bar{\gamma }_kg_{QAM}(1-\rho (1-L))}{\bar{\gamma }_kg_{QAM}(1-\rho (1-L))}\Bigg )^{-1} \\&\quad \Bigg (t+\frac{1+\bar{\gamma }_kg_{QAM}(1-\rho )}{\bar{\gamma }_kg_{QAM}(1-\rho )}\Bigg )^{1-L}\Bigg ] dt \end{aligned}$$

Above integral term is solved using [eq.(3.197), [21]],

$$\begin{aligned} I_{12}&= \frac{2}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg )\frac{B(\frac{1}{2},L-\frac{1}{2})}{(1+\bar{\gamma }_kg_{QAM}(1-\rho ))^{L-1}} ~_2F_1 \\&\qquad \Bigg (L- 1,\frac{1}{2};L;1-\frac{(1+\bar{\gamma }_kg_{QAM}(1-\rho (1-L)))(1-\rho )}{(1-\rho (1-L))(1+\bar{\gamma }_kg_{QAM}(1-\rho ))} \Bigg ) \\&\qquad \Bigg ( \frac{\bar{\gamma }_kg_{QAM}(1-\rho (1-L))}{1+\bar{\gamma }_kg_{QAM}(1-\rho (1-L))} \Bigg )^{\frac{1}{2}} \\ I_2&= \int _{2}^{\infty } \frac{\frac{2}{\pi }(1-\frac{1}{\sqrt{M}})^2(1+\bar{\gamma }_kg_{QAM}y(1-\rho ))^{1-L}}{y\sqrt{y-1}(1+\bar{\gamma }_kg_{QAM}y(1-\rho (1-L)))} dy \\&= \frac{2}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg )^2 \int _{2}^{\infty } \Bigg [ \frac{(1+\bar{\gamma }_kg_{QAM}y(1-\rho ))^{1-L}}{y\sqrt{y-1}} \\&\quad -\frac{\bar{\gamma }_kg_{QAM}(1-\rho (1-L))(1+\bar{\gamma }_kg_{QAM}y(1-\rho ))^{1-L}}{\sqrt{y-1}(1+\bar{\gamma }_kg_{QAM}y(1-\rho (1-L)))} \Bigg ] dy \\&=I_{21} - I_{22} \end{aligned}$$

Integration of \(I_{21}\) and \(I_{22}\) are derived separately to find out solution of \(I_2\).

$$\begin{aligned} I_{21}&= \frac{2}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg )^2 \int _{2}^{\infty } \frac{(1+\bar{\gamma }_kg_{QAM}y(1-\rho ))^{1-L}}{y\sqrt{y-1}} dy \end{aligned}$$

using [20]], above integration is reduced to following term,

$$\begin{aligned} I_{21}&= \frac{2}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg )^2 (\bar{\gamma }_kg_{QAM}(1-\rho ))^{1-L} \Bigg [2\sqrt{y-1} \\&\quad \Bigg ( 1+\frac{1}{\bar{\gamma }_kg_{QAM}(1-\rho )} \Bigg )^{1-L} F_1 \Bigg (\frac{1}{2};L-1,1;\frac{3}{2}; \\&\quad \frac{1-y}{1+\frac{1}{\bar{\gamma }_kg_{QAM}(1-\rho )}}, 1-y \Bigg )\Bigg ]^{\infty }_{2} \\ I_{21}&= -\frac{4}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg )^2 (1+\bar{\gamma }_kg_{QAM}(1-\rho ))^{1-L} \\&\quad F_1 \Bigg (\frac{1}{2};L-1,1;\frac{3}{2};\frac{-1}{1+\frac{1}{\bar{\gamma }_kg_{QAM}(1-\rho )}}, -1 \Bigg ) \\ I_{22}&= \frac{2}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg )^2 \int _{2}^{\infty } \Bigg [ \frac{\bar{\gamma }_kg_{QAM}(1-\rho (1-L))}{\sqrt{y-1}} \\&\quad \frac{(1+\bar{\gamma }_kg_{QAM}y(1-\rho ))^{1-L}}{(1+\bar{\gamma }_kg_{QAM}y(1-\rho (1-L)))} \Bigg ] dy \\&= \frac{2}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg )^2 \int _{1}^{\infty } \frac{(\bar{\gamma }_kg_{QAM}(1-\rho ))^{1-L}}{\sqrt{t}(\alpha +t)(\beta +t)^{L-1}} dt \\&\quad \Bigg [where, ~\alpha =\frac{1+\bar{\gamma }_kg_{QAM}(1-\rho (1-L))}{\bar{\gamma }_kg_{QAM}(1-\rho (1-L))} ~and \\&\quad \beta =\frac{1+\bar{\gamma }_kg_{QAM}(1-\rho )}{\bar{\gamma }_kg_{QAM}(1-\rho )} \Bigg ] \end{aligned}$$

using [20], above integration is reduced to following term,

$$\begin{aligned} I_{22}&= \frac{2}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg )^2 (\bar{\gamma }_kg_{QAM}(1-\rho ))^{1-L} \Bigg [ \frac{2\sqrt{t}}{\alpha \beta ^L}\Bigg ((\beta -\alpha ) \\&F_1\Bigg (\frac{1}{2};L,1;\frac{3}{2};-\frac{t}{\beta },-\frac{t}{\alpha }\Bigg ) +\alpha _2F_1\Bigg (\frac{1}{2},L;\frac{3}{2};\frac{-t}{\beta }\Bigg ) \Bigg ]^{\infty }_{1} \\ I_{22}&= -\frac{4}{\pi }\Bigg (1-\frac{1}{\sqrt{M}}\Bigg )^2 \frac{(\bar{\gamma }_kg_{QAM}(1-\rho ))^{1-L}}{\alpha \beta ^L} \Bigg [ (\beta -\alpha ) \\&F_1\Bigg (\frac{1}{2};L,1;\frac{3}{2};-\frac{1}{\beta },-\frac{1}{\alpha }\Bigg ) + \alpha _2F_1\Bigg (\frac{1}{2},L;\frac{3}{2};\frac{-1}{\beta }\Bigg ) \Bigg ] \end{aligned}$$

using \(I_{11}\), \(I_{12}\), \(I_{21}\), \(I_{22}\) terms, \(P_{s,k,QAM}\) can be written as follows:

$$\begin{aligned}&P_{s,k,QAM}= \frac{2(1-1/\sqrt{M})}{\pi (\bar{\gamma }_kg_{QAM}(1-\rho ))^{L-1}} {B}\Bigg (L-\frac{1}{2}, \frac{1}{2}\Bigg ) ~_2{F}_1 \\&\quad \quad \Bigg (L- 1, L-\frac{1}{2}; L; -\frac{1}{\bar{\gamma }_k(1-\rho )}\Bigg ) \\&\qquad \qquad \quad \quad -\frac{2(1-1/\sqrt{M})}{\pi (1+\bar{\gamma }_kg_{QAM}(1-\rho ))^{L-1}}\\&\quad \quad \Bigg (\frac{\bar{\gamma }_kg_{QAM}(1-\rho (1-L))}{1+\bar{\gamma }_kg_{QAM}(1-\rho (1-L))}\Bigg )^{\frac{1}{2}} {B}\Bigg (\frac{1}{2},L-\frac{1}{2}\Bigg )\\&\quad \quad _2{F}_1\Bigg (L-1, \frac{1}{2}; L; 1-\frac{(1+\bar{\gamma }_kg_{QAM}(1-\rho (1-L)))(1-\rho )}{(1-\rho (1-L))(1+\bar{\gamma }_kg_{QAM}(1-\rho ))}\Bigg ) \\&\qquad \qquad \quad \quad + \frac{4(1-1/\sqrt{M})^2}{\pi (1+\bar{\gamma }_kg_{QAM}(1-\rho ))^{L-1}} F_1\Bigg ( \frac{1}{2}; L-1, 1; \frac{3}{2}; \\&\quad \quad \quad \quad \quad \quad \quad \frac{-1}{1+\frac{1}{\bar{\gamma }_kg_{QAM}(1-\rho )}},-1\Bigg ) \\&\qquad \qquad \quad \quad + \frac{4(1-1/\sqrt{M})^2}{\pi (\bar{\gamma }_kg_{QAM}(1-\rho ))^{L-1}\alpha \beta ^L}\\&\quad \quad \Bigg [(\beta -\alpha ) F_1\Bigg (\frac{1}{2};L,1;\frac{3}{2};\frac{-1}{\beta },\frac{-1}{\alpha }\Bigg )\\&\qquad \qquad \quad \quad + \alpha _2F_1\Bigg (\frac{1}{2},L;\frac{3}{2};\frac{-1}{\beta }\Bigg )\Bigg ]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, D.J., Trivedi, Y.N. & Bera, S.C. Performance analysis of receive diversity under time-varying and spatially correlated channels using partial CSI. Telecommun Syst 72, 431–440 (2019). https://doi.org/10.1007/s11235-019-00577-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00577-5

Keywords

Navigation