Skip to main content
Log in

Spectral coded phase bipolar OCDMA technological implementation thanks to low index modulation filters

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Optical code division multiple access (OCDMA) systems are attracting an increasing interest in optical fiber communication. This is due to the various advantages that they provide; in particular for the simultaneous improvement capacity and flexible channel allocation as well as fastest data speeds and increased security. In this paper, the authors present an experimental demonstration of bipolar optical CDMA System with phase shift using E-beam technique on \(H_xLi_{1-x}NbO_3\) transmission channel realized by proton exchange. The idea of the proposed system is to evaluate the result of eight cascaded Bragg filters in very narrow band. The coded sequence corresponds to that of Hadamard \(H_8(7)\), represented by the bits ’1 1 −1 −1 −1 −1 1 1’, and phase shift have been identified on the coder spectral response whilst increasing the multiplexing capacity in terms of the total number of users and the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chicharro, F. I., Ortega, B., De Diego, M., & Mora, J. (2017). OOFDM signal transmission using a single optical broadband source. IEEE Photonics Technology Letters, 29(7), 563–566.

    Article  Google Scholar 

  2. Maslouhi, I., Ar-reyouchi, E. M., Ghoumid, K., & Baibai, K. (2018). Analysis of end-to-end packet delay for internet of things in wireless communications. International Journal of Advanced Computer Science and Applications (IJACSA), 9(9), 338–343.

    Google Scholar 

  3. Limkar, S. V., & Jha, R. K. (2019). Computing over encrypted spatial data generated by IoT. Telecommunication Systems, 70(2), 193–229.

    Article  Google Scholar 

  4. Wang, S. L., Chen, W., Zhu, N. H., Liu, J. G., Wang, W. T., & Guo, J. J. (2015). A novel optical frequency-hopping scheme for secure WDM optical communications. IEEE Photonics Journal, 7(3), 1–8.

    Google Scholar 

  5. Wang, Y., Gao, S., Wang, K., Li, H., & Skafidas, E. (2017). Ultra-broadband, compact, and highreflectivity circular Bragg grating mirror based on 220 nm silicon-on-insulator platform. Optics Express, 25(6), 6653–6663.

    Article  Google Scholar 

  6. Ghadban, A., El Yahyaoui, M., Chatea, Y., Kouddane, R., Ar-reyouchi, E. M., & Ghoumid, K. (2018). 60 GHZ millimeter wave generation for RoF systems based on the beat of narrow band Bragg filters, 519. Lecture Notes in Electrical Engineering, Singapore: Springer, pp. 10–15.

  7. Demeechai, T., Phudpong, R., Pongthavornkamol, T., Heidebrecht, E., Wallada, W., Pongpaibool, P., et al. (2018). Novel signal reproduction technique for improvement of UMTS/WCDMA communication jamming. Telecommunication Systems, 69(4), 545–552.

    Article  Google Scholar 

  8. Ayotte, S., & Rusch, L. A. (2005). Experimental comparison of coherent sources in a four user \(\lambda \)-t OCDMA system at 1.25 Gb/s. IEEE Photonics Technology Letters, 17(11), 2493–2495.

    Article  Google Scholar 

  9. Farghal, A. E. (2016). Performance analysis of core-multiplexed spectral amplitude coded OCDMA PON. IEEE/OSA Journal of Optical Communications and Networking, 8(9), 666–675.

    Article  Google Scholar 

  10. Li, R., & Dang, A. (2017). A novel coherent OCDMA scheme over atmospheric turbulence channels. IEEE Photonics Technology Letters, 29(5), 427–430.

    Article  Google Scholar 

  11. Tancevski, L., & Andonovic, I. (1996). Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security. Journal of Lightwave Technology, 14(12), 2636–2647.

    Article  Google Scholar 

  12. Stok, A., & Sargent, E. H. (2002). System performance comparison of optical CDMA and WDMA in a broadcast local area network. IEEE Communications Letters, 6(9), 876–884.

    Article  Google Scholar 

  13. Wang, X., Wada, N., Cincotti, G., Miyazaki, T., & Kitayama, K. (2006). Demonstration of over 128-gb/s-capacity (12-user/spl times/10.71-gb/s/user) asynchronous OCDMA using FEC and AWG-based multiport optical encoder/decoders. IEEE Photonics Technology Letters, 18(5), 1603–1605.

    Article  Google Scholar 

  14. Al-Khafaji, H. M. R., Ngah, R., Aljunid, S. A., & Rahman, T. A. (2015). A new two-code keying scheme for SAC-OCDMA systems enabling bipolar encoding. Journal of Modern Optics, 62, 327–335.

    Article  Google Scholar 

  15. Shalaby, H. M. H. (2004). Performance analysis of an optical CDMA random access protocol. Journal of Lightwave Technology, 22(5), 5543–5550.

    Article  Google Scholar 

  16. Yin, H., & Richardson, D. J. (2009). Optical code division multiple access communication networks. Berlin: Springer.

    Google Scholar 

  17. Fsaifes, I., Lepers, C., Obaton, A.-F., & Gallion, P. (2006). DS-OCDMA encoder/decoder performance analysis using optical low-coherence reflectometry. IEEE/OSA Journal of Lightwave Technology, 24(8), 3121–3128.

    Article  Google Scholar 

  18. Brugeaud, G., Vergonjanne, A. J., & Cances, J. P. (2007). Prime code efficiency in DS-OCDMA systems using parallel interference cancellation. Journal of Communications, 2(3), 243–249.

    Google Scholar 

  19. Hernandez, V. J., Mendez, A., Bennett, C. V., Gagliardi, R. M., & Lennon, W. J. (2005). Bit-error rate analysis of a 16-user gigabit ethernet optical-CDMA (OCDMA) technology demonstrator using wavelength/time codes. IEEE Photonics Technology Letters, 17(12), 2784–2786.

    Article  Google Scholar 

  20. Petropoulos, P., Wada, N., Teh, P. C., Ibsen, M., Chujo, W., Kitayama, K.-I., et al. (2001). Demonstration of a 64-chip OCDMA system using superstructured fiber gratings and time-gating detection. IEEE Photonics Technology Letters, 13(11), 563–566.

    Article  Google Scholar 

  21. Ghoumid, K., Benkelfat, B.-E., Ferrière, R., Ulliac, G., & Gharbi, T. (2012). Technological implementation Fabry–Pérot Cavity in \(Ti:LiNbO_3\) waveguide by FIB. IEEE Photonics Technology Letters, 24(4), 231–233.

    Article  Google Scholar 

  22. Ferrière, R., Benkelfat, B.-E., Dudley, J., & Ghoumid, K. (2006). Bragg miroir inscription on \(LiNbO_3\) waveguides by index microstructuration. Jorurnal of Applied Optics, 45(15), 1–9.

    Google Scholar 

  23. Ghoumid, K., Mekaoui, S., Ouariach, A., Cheich, R., Nougaoui, A., & Gharbi, T. (2015). Tunable filter based on cavity electro-optic modulation for DWDM applications. Optics Communications, 334, 332–335.

    Article  Google Scholar 

  24. Ouariach, A., Ghoumid, K., Malek, R., El moussati, A., Nougaoui, A., & Gharbi, T. (2016). Multi-band filter at adjustable FSR by convolution of the transfer functions according to the Vernier effect. IET Optoelectronics, 10(4), 128–133.

    Article  Google Scholar 

  25. Ghoumid, K., Ar-reyouchi, E.-M., Ghadban, A., Hajji, B., Yahiaoui, R., & Gharbi, T. (2017). Signal breathing losses in filters based on optical channel with high index modulation. International Journal of Electronics and Communications (AEU), 73(3), 9–15.

    Article  Google Scholar 

  26. Cherubini, G. (2003). Hybrid TDMA/CDMA based on filtered multitone modulation for uplink transmission in HFC networks. IEEE Communications Magazine, 41(10), 108–115.

    Article  Google Scholar 

  27. Wang, X., Morikawa, H., & Aoyama, T. (2002). Burst optical deflection routing protocol for wavelength routing WDM networks. Optical Network Magazine, pp. 12–19.

  28. Ghoumid, K., Elhachemi, I., Mekaoui, S., Pieralli, C., & Gharbi, T. (2013). Analysis of optical filtering in waveguides with a high index modulation using the extended coupled mode theory by hybridization of a matrix method. Optics Communications, 289, 85–91.

    Article  Google Scholar 

  29. Hill, K. O., & Meltz, G. (1997). Fiber Bragg grating technology fundamentals and overview. IEEE/OSA Journal of Lightwave Technology, 15(8), 1263–1276.

    Article  Google Scholar 

  30. Ghoumid, K., Benkelfat, B.-E., Ferrière, R., Ulliac, G., & Gharbi, T. (2011). Wavelength-selective \(Ti:LiNbO_3\) multiple Y-branch coupler based on focused Ion Beam milled Bragg reflectors. IEEE/OSA Journal of Lightwave Technology, 29(23), 3536–41.

    Article  Google Scholar 

  31. Ghoumid, K., Ferrière, R., Benkelfat, B.-E., Guizal, B., & Gharbi, T. (2010). Optical performance of Bragg gratings fabricated in \(Ti:LiNbO_3\) waveguides by Focused Ion Beam milling. IEEE/OSA Journal of Lightwave Technology, 28(23), 3488–3493.

    Google Scholar 

  32. Ghadban, A., Ghoumid, K., El Moussati, A., Zaidouni, J., & Ar-reyouchi, E. M. (2017). Improvement of BER and transmission performance by optimizing parameters of high index modulation filters. In Proceedings IEEE international conference on wireless technologies, embedded and intelligent systems (WITS).

  33. Huang, J., & Yen, C.-T., & Chen, B.-H. (2008). Phase-noise suppression in optical CDMA network using orthogonal polarization techniques. In Third international conference on communications and networking in China, pp. 1049–1054.

  34. Sahuguede, S., Julien-Vergonjanne, A., & Cances, J. P. (2011). Beat noise compensation in OCDMA systems using soft decoding based FEC. IEEE Transactions on Communications, 59, 1400–1410.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge all personnel of the MIMINTO technology centre of the Institut FEMTO-ST, Besançon, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Ghoumid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoumid, K., Ghadban, A., Boukricha, S. et al. Spectral coded phase bipolar OCDMA technological implementation thanks to low index modulation filters. Telecommun Syst 73, 433–441 (2020). https://doi.org/10.1007/s11235-019-00610-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00610-7

Keywords

Navigation