Skip to main content
Log in

Cooperative spectrum sensing with incremental relaying

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this article, we suggest a new Spectrum Sensing (SS) algorithm using Incremental Relaying (IR). In previous studies, the relays always cooperate in the SS process. However, sometimes the Signal to Noise Ratio (SNR) of the direct link between the Primary User (PU) and the Fusion Node (FN) is high and cooperation is not required. We suggest to activate the relays only when the SNR of direct link is lower than a predefined threshold T. Otherwise, the relays should be idle. In the proposed SS algorithm with IR, all relays can amplify the PU signal to FN only when the SNR of direct link is lower than T. We can also implement IR with relay selection techniques. When the SNR of direct link is lower than T, we select the best relay. Three relay selection algorithms are investigated such as opportunistic amplify and forward, partial and reactive relay selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng, K., Liu, X.-Y., Liu, X., & Zhu, Y. (2019). Hybrid overlay-underlay cognitive radio networks with energy harvesting. IEEE Transactions on Communications, 67, 4669–4682.

    Article  Google Scholar 

  2. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23, 201–220.

    Article  Google Scholar 

  3. Digham, F. F., Alouini, M. S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.

    Article  Google Scholar 

  4. Kim, J. H., & Choi, J. P. (2019). Sensing coverage-based cooperative spectrum detection in cognitive radio networks. IEEE Sensors Journal, 19, 5325–5332.

    Article  Google Scholar 

  5. Kulkarni, K., Franchi, N., & Fettweis, G. (2019). Real-time cooperative spectrum sensing: Reliable localization of unknown interferers in shared spectrum. In 12th international ITG conference on systems, communications and coding (pp. 1–6).

  6. Yuan, S., Li, L., & Chigan, C. (2019). On MMD-based secure fusion strategy for robust cooperative spectrum sensing. IEEE Transactions on Cognitive Communications and Networking, 5, 504–516.

    Article  Google Scholar 

  7. Yang, T., Wu, Y., Li, L., Xu, W., & Tan, W. (2019). Fusion rule based on dynamic grouping for cooperative spectrum sensing in cognitive radio. IEEE Access, 7, 51630–51639.

    Article  Google Scholar 

  8. Kumar, A., Saha, S., & Tiwari, K. (2019). A double threshold based cooperative spectrum sensing with novel hard-soft combining over fading channels. IEEE Wireless Communications Letters, 8, 1154–1158.

    Article  Google Scholar 

  9. Biswas, S., Dey, S., & Shirazinia, A. (2019). Sum throughput maximization in a cognitive multiple access channel with cooperative spectrum sensing and energy harvesting. IEEE Transactions on Cognitive Communications and Networking, 5, 382–399.

    Article  Google Scholar 

  10. Caso, G., De Nardis, L., Ferrante, G. C., & Di Benedetto, M. G. (2013). Cooperative spectrum sensing based on majority decision under CFAR and CDR constraints. In IEEE Personal Indoor and Mobile Radio Communications (PIMRC) (pp. 51–55).

  11. Li, Z., yu, F., & Huang, M. (2009). A cooperative spectrum sensing consensus scheme in cognitive radio. In Processing INFOCOM (pp. 2546–2550).

  12. Ganesa, G., & Li, Y. G. (2007). Cooperative spectrum sensing in cognitive radio, part I : Two user networks. IEEE Transactions on Wireless Communications, 6, 2204–2213.

    Article  Google Scholar 

  13. Ganesa, G., & Li, Y. G. (2007). Cooperative spectrum sensing in cognitive radio, part II : Multiuser networks. IEEE Transactions on Wireless Communications, 6, 2204–2213.

    Article  Google Scholar 

  14. Zhang, W., & Letaief, K. (2008). Cooperative spectrum sensing with transmit and relay diversity in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(12), 4761–4766.

    Article  Google Scholar 

  15. Ma, J., Zhao, G., & Li, Y. (2008). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(11), 4502–4507.

    Article  Google Scholar 

  16. Atapattu, S., Tellambura, C., & Jiang, H. (2009). Relay based cooperative spectrum sensing in cognitive radio networks. In GLOBECOM 2009.

  17. Atapattu, S., Tellambura, C., & Jiang, H. (2011). Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 4(10), 1232–1241.

    Article  Google Scholar 

  18. Hamad, R. A., & Boujemaa, H. (2018). Cooperative spectrum sensing with relay selection. Telecommunication Systems, 68(4), 631–642.

    Article  Google Scholar 

  19. Alhamad, R., Wang, H., & Yao, Y.-D. (2017). Cooperative spectrum sensing with random access reporting channels in cognitive radio networks. IEEE Transactions on Vehicular Technology, 66(8), 7249–7261.

    Article  Google Scholar 

  20. Alhamad, R., Wang, H., & Yao, Y.-D. (2015). Reporting channel design and analysis in cooperative spectrum sensing for cognitive radio networks. In Vehicular Technology Conference (VTC) Fall (pp. 1–5).

  21. Nuttall, A. H. (1974). Some integrals involving the QM function. Technical report, Naval Underwater systems Center (NUSC).

  22. Boujemaa, H. (2010). Exact symbol error probability of cooperative systems with partial relay selection. European Transactions on Telecommunications, 21, 79–85.

    Google Scholar 

  23. Hasna, M., & Alouini, M. S. (2003). End-to-end performance of transmission systems with relays over Rayleigh fading channels. IEEE Transactions on Wireless Communications, 2, 1126–1131.

    Article  Google Scholar 

  24. Hussain, S. I., Alouini, M. S., Qarage, K., & Hasna, M. (2012). Reactive relay selection in underlay cognitive networks with fixed gain relays. In IEEE international conference on communications 2012 (pp. 1784–1788).

  25. Proakis, J. G. (1995). Digital communications (3rd ed.). New York City: Mc Graw Hill.

    Google Scholar 

Download references

Acknowledgements

Funding was provided by The sincere appreciation for the deanship of Scientific research at Saudi Electronic University for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Alhamad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: PDF of \(Z^{up}=\Gamma _{PD}+\Gamma _{PRD}^{up}|\Gamma _{PD}<T \)

Appendix A: PDF of \(Z^{up}=\Gamma _{PD}+\Gamma _{PRD}^{up}|\Gamma _{PD}<T \)

$$\begin{aligned} f_{Z^{up}}(z)=\int _{0}^{T }f_{\Gamma _{PD}|\Gamma _{PD}<T }(x)f_{\Gamma _{PRD}^{up}}(z-x)dx \end{aligned}$$
(49)

For Rayleigh fading channels and \(z<T ,\) we have

$$\begin{aligned} f_{Z^{up}}(z)= & {} \int _{0}^{z}\frac{e^{-\frac{x}{\overline{\Gamma }_{PD}}}}{ \overline{\Gamma }_{PD}\left[ 1-e^{-\frac{T }{\overline{\Gamma }_{PD}}} \right] }\frac{e^{-\frac{\left( z-x\right) }{\overline{\Gamma }_{PRD}^{up}}} }{\overline{\Gamma }_{PRD}^{up}}dx \nonumber \\= & {} \frac{e^{-\frac{z}{\overline{\Gamma }_{PD}}}-e^{-\frac{z}{\overline{ \Gamma }_{PRD}^{up}}}}{\left( \overline{\Gamma }_{PD}-\overline{\Gamma } _{PRD}^{up}\right) \left[ 1-e^{-\frac{T }{\overline{\Gamma }_{PD}}} \right] } \end{aligned}$$
(50)

If \(z>T \),

$$\begin{aligned} f_{Z^{up}}(z)= & {} \int _{0}^{T }\frac{e^{-\frac{x}{\overline{\Gamma }_{PD}}}}{ \overline{\Gamma }_{PD}\left[ 1-e^{-\frac{T }{\overline{\Gamma }_{PD}}} \right] }\frac{e^{-\frac{\left( z-x\right) }{\overline{\Gamma }_{PRD}^{up}}} }{\overline{\Gamma }_{PRD}^{up}}dx \nonumber \\= & {} \frac{e^{-\frac{z}{\overline{\Gamma }_{PRD}^{up}}}\left[ e^{T \left( \frac{1}{\overline{\Gamma }_{PRD}^{up}}-\frac{1}{\overline{\Gamma }_{PD}} \right) }-1\right] }{\left( \overline{\Gamma }_{PD}-\overline{\Gamma } _{PRD}^{up}\right) \left[ 1-e^{-\frac{T }{\overline{\Gamma }_{PD}}} \right] } \end{aligned}$$
(51)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhamad, R., Boujemaa, H. Cooperative spectrum sensing with incremental relaying. Telecommun Syst 74, 45–53 (2020). https://doi.org/10.1007/s11235-019-00632-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00632-1

Keywords

Navigation