Skip to main content
Log in

An enhanced frequency-domain contention scheme for IEEE 802.11 WLANs

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Frequency-domain contention is a new paradigm of contention that has been proposed to enhance the performance of OFDM wireless networks. In this paper, we demonstrate how frequency-domain contention schemes would fail in a wireless local area network (WLAN) due to the existence of nodes that are hidden from each other. In addition, we propose a new MAC protocol, which is called EFDC (enhanced frequency-domain contention), that solves the failure problem without sacrificing performance in a WLAN. Simulation is used to evaluate and compare EFDC to the T2F (time-to-frequency) protocol and IEEE 802.11 contention method. The results show that EFDC achieves higher performance in terms of throughput and delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Malik, A., Qadir, J., Ahmad, B., Yau, K. L. A., & Ullah, U. (2015). QoS in IEEE 802.11-based wireless networks: A contemporary review. Journal of Network and Computer Applications, 55, 24–46.

    Article  Google Scholar 

  2. Omar, H. A., Abboud, K., Cheng, N., Malekshan, K. R., Gamage, A. T., & Zhuang, W. (2016). A survey on high efficiency wireless local area networks: Next generation WiFi. IEEE Communications Surveys & Tutorials, 18(4), 2315–2344.

    Article  Google Scholar 

  3. Fang, J., Tan, K., Zhang, Y., Chen, S., Shi, L., Zhang, J., et al. (2013). Fine-grained channel access in wireless LAN. IEEE/ACM Transactions on Networking (TON), 21(3), 772–787.

    Article  Google Scholar 

  4. Al-Mefleh, H., & Al-Kofahi, O. (2018). Frequency-domain contention and polling MAC protocols in IEEE 802.11 wireless networks: A survey. Computer Communications, 129, 1–18.

    Article  Google Scholar 

  5. Sen, S., Choudhury, R. R., & Nelakuditi, S. (2011). Listen before you talk, but on the frequency domain. ACM SIGMOBILE Mobile Computing and Communications Review, 14(4), 7–9.

    Article  Google Scholar 

  6. Yomo, H., Nguyen, C. H., Kyritsi, P., Nguyen, T. D., Prasad, R., & Chakraborty, S. S. (2005). PHY and MAC performance evaluation of IEEE 802.11 a WLAN over fading channels. IETE Journal of Research, 51(1), 83–94.

    Article  Google Scholar 

  7. IEEE Std 802.11a-1999: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 1: High-speed Physical Layer in the 5 GHz band

  8. IEEE Std 802.11-2012: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications

  9. Jain, R., Chiu, D., & Hawe, W. (1984) A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. DEC Research Report TR-301

  10. Al-Mefleh, H. (2017). SEMP: Self-elimination MAC protocol for IEEE 802.11 wireless networks. Wireless Personal Communications, 94(3), 755–776.

    Article  Google Scholar 

  11. Zhang, C., Chen, P., Ren, J., Wang, X., & Vasilakos, A. V. (2017). A backoff algorithm based on self-adaptive contention window update factor for IEEE 802.11 DCF. Wireless Networks, 23(3), 749–758.

    Article  Google Scholar 

  12. Cheng, M. H., Chiang, C. I., Hwang, W. S., Wu, Y. J., & Lin, C. H.: (2018). An adaptive state backoff algorithm for wireless mesh networks. In 2018 IEEE international conference on applied system invention (ICASI) (pp. 953–956). IEEE

  13. Chong, W. K., Drieberg, M., & Jeoti, V. (2018). Mitigating false blocking problem in wireless ad hoc networks. Telecommunication Systems, 67(1), 31–46.

    Article  Google Scholar 

  14. Al-Mefleh, H., & Chang, J.M. (2008) Turning hidden nodes into helper nodes in IEEE 802.11 wireless LAN networks. In International conference on research in networking (pp. 824–835). Springer.

  15. Ali, M. Z., Mišić, J., & Mišić, V. B. (2018) Impact of hidden nodes on uplink transmission in IEEE 802.11 ax heterogeneous network. In 2018 14th International wireless communications & mobile computing conference (IWCMC) (pp. 118–123). IEEE.

  16. Akande, D. O., Salleh, M. F. M., & Ojo, F. K. (2018). MAC protocol for cooperative networks, design challenges, and implementations: A survey. Telecommunication Systems, 69(1), 95–111.

    Article  Google Scholar 

  17. Akimoto, K., Kameda, S., & Suematsu, N. (2018). Optimum allocation scheme for user fairness of location-based virtual sector method solving hidden terminal problem in WLAN. IEEE transactions on vehicular technology.

  18. Al-Mefleh, H., & Al-Kofahi, O. (2016). Taking advantage of jamming in wireless networks: A survey. Computer Networks, 99, 99–124.

    Article  Google Scholar 

  19. Sen, S., Roy Choudhury, & R., Nelakuditi, S. (2011) No time to countdown: Migrating backoff to the frequency domain. In Proceedings of the 17th annual international conference on Mobile computing and networking (pp. 241–252). ACM.

  20. Feng, X., Zhang, J., Zhang, Q., & Li, B. (2012) Use your frequency wisely: Explore frequency domain for channel contention and ACK. In INFOCOM, 2012 proceedings IEEE (pp. 549–557). IEEE.

  21. Roman, B., Wassell, I., & Chatzigeorgiou, I. (2011). Scalable cross-layer wireless access control using multi-carrier burst contention. IEEE Journal on Selected Areas in Communications, 29(1), 113–128.

    Article  Google Scholar 

  22. Tan, K., Fang, J., Zhang, Y., Chen, S., Shi, L., Zhang, J., et al. (2011). Fine-grained channel access in wireless LAN. ACM SIGCOMM Computer Communication Review, 41(4), 147–158.

    Article  Google Scholar 

  23. Zarinni, F., & Das, S. R. (2012) btFICA MAC protocol for high data rate WLANs. In 2012 21st International conference on computer communications and networks (ICCCN) (pp. 1–9). IEEE.

  24. Saha, D., Dutta, A., Grunwald, D., & Sicker, D. (2009) PHY aided MAC—A new paradigm. In INFOCOM 2009, IEEE (pp. 2986–2990). IEEE.

  25. Lin, J., Liang, W., Yu, H., & Xiao, Y. (2015). Polling in the frequency domain: A new MAC protocol for industrial wireless network for factory automation. International Journal of Ad Hoc and Ubiquitous Computing, 20(4), 211–222.

    Article  Google Scholar 

  26. Zheng, M., Lin, J., Liang, W., & Yu, H. (2015). A priority-aware frequency domain polling MAC protocol for OFDMA-based networks in cyber-physical systems. IEEE/CAA Journal of Automatica Sinica, 2(4), 412–421.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mahmoud Al-Sobh (Associate Professor, Department of English Language and Literature, Ajloan National University, Jordan, sobh_mohad@yahoo.com) for his valuable time and comments in reviewing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haithem Al-Mefleh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mefleh, H., Al-Kofahi, O. An enhanced frequency-domain contention scheme for IEEE 802.11 WLANs. Telecommun Syst 74, 27–34 (2020). https://doi.org/10.1007/s11235-019-00633-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00633-0

Keywords

Navigation