Skip to main content
Log in

Analysis of the decoupled uplink downlink technique for varying path loss exponent in multi-tier HetNet

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, the impact of varying path loss exponent (PLE) on user association probability, decoupled uplink coverage probability as well as decoupled uplink average spectral efficiency in downlink uplink decoupled (DUDe) multi-tier heterogeneous networks, is investigated. We investigate the effect of the difference in path loss exponents in both macro and small cell environments over uplink network performance. It is assumed that the mobile user connected to the macro base station experience different path loss exponent as compared to when connected to small base station. It is observed that the difference of path loss exponents in both cases has significant effect on the user association probability, decoupled uplink coverage probability as well as decoupled uplink average spectral efficiency. Moreover, in order to further support key findings and make sound comparison between coupled and DUDe performance in varying PLE environment, generalized analytical expressions for coupled association probabilities, along with coupled uplink coverage probability and coupled uplink average spectral efficiency have been derived. The analytical results evaluated in this paper are compared with the computer simulation and found in good agreement. Our analysis shows that decoupling technique performs suboptimal for cases where the environments around macro and small base stations are different with respect to each other. The work explained in this paper highlights the limitation of applying DUDe technique in realistic conditions where the PLEs of cellular tiers are not exactly equal to one another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cisco. (2019). Cisco visual networking index: Forecast and trends, 2017–2022 white paper. June 6 2017. Updated February 27, 2019. Document ID:1551296909190103.

  2. Ericsson Mobility Report. (2019). Publisher: Fredrik Jejdling. Ericsson: Executive vice president and head of business area networks.

  3. Dhillon, H. S., Ganti, R. K., Baccelli, F., & Andrews, J. G. (2012). Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 30(3), 550–560.

    Article  Google Scholar 

  4. Ghosh, A., Mangalvedhe, N., Ratasuk, R., Mondal, B., Cudak, M., Visotsky, E., et al. (2012). Heterogeneous cellular networks: From theory to practice. IEEE Communications Magazine, 50, 54–64.

    Article  Google Scholar 

  5. Novlan, T. D., Ganti, R. K., Ghosh, A., & Andrews, J. G. (2012). Analytical evaluation of fractional frequency reuse for heterogeneous cellular networks. IEEE Transactions on Communications, 60(7), 2029–2039.

    Article  Google Scholar 

  6. Ghosh, A., Mangalvedhe, N., Ratasuk, R., Mondal, B., Cudak, M., Visotsky, E., et al. (2012). Heterogeneous cellular networks: From theory to practice. IEEE Communications Magazine, 50, 6.

    Article  Google Scholar 

  7. Jo, H.-S., Sang, Y. J., Xia, P., & Andrews, J. G. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications, 11, 3484–3495.

    Article  Google Scholar 

  8. Zhang, Q., Yang, T., Zhang, Y., & Feng, Z. (2015). Fairness guaranteed novel eICIC technology for capacity enhancement in multi-tier heterogeneous cellular networks. EURASIP Journal on Wireless Communications and Networking, 1, 62.

    Article  Google Scholar 

  9. Ali, S., Aslam, M. I., & Ahmed, I. (2016). Analysis of proportional fairness utility function and interference mitigation in heterogeneous cellular networks. In 31st IEEEP international multi-topic symposium, Karachi, Pakistan.

  10. Ericsson. (2017). Ericsson mobility report. Ericsson: NiklasHeuveldop, Chief Strategy Officer and Senior Vice President Technology and Emerging Business.

  11. Javed, F., Afzal, M. K., Sharif, M., & Kim, B. (2018). Internet of things (IoT) operating systems support, networking technologies, applications, and challenges: A comparative review. IEEE Communications Surveys and Tutorials, 20(3), 2062–2100. https://doi.org/10.1109/COMST.2018.2817685.

    Article  Google Scholar 

  12. Gao, X., Wang, P., Niyato, D., Yang, K., & An, J. (2019). Auction-based time scheduling for backscatter-aided RF-powered cognitive radio networks. IEEE Transactions on Wireless Communications, 18(3), 1684–1697. https://doi.org/10.1109/TWC.2019.2895340.

    Article  Google Scholar 

  13. Orlosky, J., Kiyokawa, K., & Takemura, H. (2017). Virtual and augmented reality on the 5G highway. Journal of Information Processing, 25, 133–141.

    Article  Google Scholar 

  14. Boccardi, F., Andrews, J., Elshaer, H., Dohler, M., et al. (2016). Why to decouple the uplink and downlink in cellular networks and how to do it. IEEE Communications Magazine, 54, 110–117.

    Article  Google Scholar 

  15. Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine, 51(3), 136–144. https://doi.org/10.1109/MCOM.2013.6476878.

    Article  Google Scholar 

  16. Elshaer, H., Boccardi, F., Dohler, M., & Irmer, R. (2014). Downlink and uplink decoupling: A disruptive architectural design for 5G networks. In 2014 IEEE global communications conference, Austin, TX (pp. 1798–1803). https://doi.org/10.1109/GLOCOM.2014.7037069.

  17. Han, I. C. L. S., Xu, Z., Wang, S., Sun, Q., & Chen, Y. (2016). New paradigm of 5G wireless internet. IEEE Journal on Selected Areas in Communications, 34, 474–482.

    Article  Google Scholar 

  18. Singh, S., Zhang, X., & Andrews, J. G. (2015). Joint rate and SINR coverage analysis for decoupled uplink-downlink biased cell associations in hetnets. IEEE Transactions on Wireless Communications, 14(10), 5360–5373.

    Article  Google Scholar 

  19. Arif, M., Wyne, S., & Ahmed, J. (2019). Performance analysis of downlink and uplink decoupled access in clustered heterogeneous cellular networks. Telecommunication Systems, 72, 355–364.

    Article  Google Scholar 

  20. Shi, M., Yang, K., Xing, C., & Fan, R. (2018). Decoupled heterogeneous networks with millimeter wave small cells. IEEE Transactions on Wireless Communications, 17, 5871–5884.

    Article  Google Scholar 

  21. Wu, J., Sun, K., & Huang, W. (2018). Uplink performance improvement by frequency allocation and power control in heterogeneous networks. In 2018 24th Asia-Pacific conference on communications (APCC) (pp. 364–369).

  22. Elshaer, H., Kulkarni, M. N., Boccardi, F., Andrews, J. G., & Dohler, M. (2016). Downlink and uplink cell association with traditional macrocells and millimeter wave small cells. IEEE Transactions on Wireless Communications, 15(9), 6244–6258. https://doi.org/10.1109/TWC.2016.2582152.

    Article  Google Scholar 

  23. Bacha, M., Wu, Y., & Clerckx, B. (2017). Downlink and uplink decoupling in two-tier heterogeneous networks with multi-antenna base stations. IEEE Transactions on Wireless Communications, 16(5), 2760–2775. https://doi.org/10.1109/TWC.2017.2665466.

    Article  Google Scholar 

  24. Smiljkovikj, K., Popovski, P., & Gavrilovska, L. (2015). Analysis of the decoupled access for downlink and uplink in wireless heterogeneous networks. IEEE Wireless Communications Letters, 4(2), 173–176. https://doi.org/10.1109/LWC.2015.2388676.

    Article  Google Scholar 

  25. Sattar, Z., Evangelista, J. V. D. C., Kaddoum, G., & Batani, N. (2019). Spectral efficiency analysis of the decoupled access for downlink and uplink in two tier network. IEEE Transactions on Vehicular Technology, 68, 4871–4883.

    Article  Google Scholar 

  26. Li, R., Luo, K., Jiang, T., & Jin, S. (2018). Uplink spectral efficiency analysis of decoupled access in multiuser MIMO HetNets. IEEE Transactions on Vehicular Technology, 67(5), 4289–4302.

    Article  Google Scholar 

  27. Sial, M. N., & Ahmed, J. (2018). Analysis of K-tier 5G heterogeneous cellular network with dual-connectivity and uplink-downlink decoupled access. Telecommunication Systems, 67(4), 669–685. https://doi.org/10.1007/s11235-017-0368-2.

    Article  Google Scholar 

  28. Sial, M. N., & Ahmed, J. (2018). A realistic uplink-downlink coupled and decoupled user association technique for K-tier 5G HetNets. Arabian Journal for Science and Engineering,. https://doi.org/10.1007/s13369-018-3339-3.

    Article  Google Scholar 

  29. Ahmed, J., & Sial, M. N. (2017). A novel and realistic hybrid downlink-uplink coupled/decoupled access scheme for 5G HetNets. Turkish Journal of Electrical Engineering & Computer Sciences, 25, 4457–4473. https://doi.org/10.3906/elk-1612-167.

    Article  Google Scholar 

  30. Wang, Hui, Garcia-Lozano, Mario, Mutafungwa, Edward, Yin, Xuefeng, & Ruiz, Silvia. (2018). Performance study of uplink and downlink splitting in ultradense highly loaded networks. Wireless Communications and Mobile Computing,. https://doi.org/10.1155/2018/1439512.

    Article  Google Scholar 

  31. Rappaport, T. S., & Sandhu, S. (1994). Radio-wave propagation for emerging wireless personal-communication systems. IEEE Antennas and Propagation Magazine, 36, 14–24.

    Article  Google Scholar 

  32. Sarkar, T. K., Zhong, J., Kyungjung, K., Medouri, A., & Salazar-Palma, M. (2003). A survey of various propagation models for mobile communication. IEEE Antennas and Propagation Magazine, 45, 51–82.

    Article  Google Scholar 

  33. Feuerstein, M. J., Blackard, K. L., Rappaport, T. S., Seidel, S. Y., & Xia, H. H. (1994). Path loss, delay spread, and outage models as functions of antenna height for microcellular system design. IEEE Transactions on Vehicular Technology, 43, 487–498.

    Article  Google Scholar 

  34. Xia, H. H. (1997). A simplified analytical model for predicting path loss in urban and suburban environments. IEEE Transactions on Vehicular Technology, 46(4), 1040–1046. https://doi.org/10.1109/25.653077.

    Article  Google Scholar 

  35. Erceg, V., Greenstein, L. J., Tjandra, S. Y., Parkoff, S. R., Gupta, A., Kulic, B., et al. (1999). An empirically based path loss model for wireless channels in suburban environments. IEEE Journal on Selected Areas in Communications, 17(7), 1205–1211. https://doi.org/10.1109/49.778178.

    Article  Google Scholar 

  36. Xia, H., Bertoni, H. L., Maciel, L. R., Lindsay-Stewart, A., & Rowe, R. (1993). Radio propagation characteristics for line-of-sight microcellular and personal communications. IEEE Transactions on Antennas and Propagation, 41(10), 1439–1447. https://doi.org/10.1109/8.247785.

    Article  Google Scholar 

  37. Erceg, V., Ghassemzadeh, S., Taylor, M., Li, D., & Schilling, D. L. (1992). Urban/suburban out-of-sight propagation modeling. IEEE Communications Magazine, 30(6), 56–61. https://doi.org/10.1109/35.141584.

    Article  Google Scholar 

  38. Rappaport, T. S., & Milstein, L. B. (1992). Effects of radio propagation path loss on DS-CDMA cellular frequency reuse efficiency for the reverse channel. IEEE Transactions on Vehicular Technology, 41(3), 231–242. https://doi.org/10.1109/25.155970.

    Article  Google Scholar 

  39. Zhang, X., & Andrews, J. G. (2015). Downlink cellular network analysis with multi-slope path loss models. IEEE Transactions on Communications, 63(5), 1881–1894. https://doi.org/10.1109/TCOMM.2015.2413412.

    Article  Google Scholar 

  40. Gupta, A. K., Zhang, X., & Andrews, J. G. (2015). SINR and throughput scaling in ultradense urban cellular networks. IEEE Wireless Communications Letters, 4(6), 605–608. https://doi.org/10.1109/LWC.2015.2472404.

    Article  Google Scholar 

  41. Yang, B., Mao, G., Ding, M., Ge, X., & Tao, X. (2018). Dense small cell networks: From noise-limited to dense interference-limited. IEEE Transactions on Vehicular Technology, 67(5), 4262–4277. https://doi.org/10.1109/TVT.2018.2794452.

    Article  Google Scholar 

  42. Nguyen, V. M., & Kountouris, M. (2016). Coverage and capacity scaling laws in downlink ultra-dense cellular networks. In 2016 IEEE international conference on communications (ICC) (pp. 1–7).

  43. Ammouri, A. A., Andrews, J. G., & Baccelli, F. (2018). A unified asymptotic analysis of area spectral efficiency in ultradense cellular networks. IEEE Transactions on Information Theory,. https://doi.org/10.1109/TIT.2018.2845380.

    Article  Google Scholar 

  44. Munir, H., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2017). Resource optimization in multi-tier HetNets exploiting multi-slope path loss model. IEEE Access, 5, 8714–8726. https://doi.org/10.1109/ACCESS.2017.2699941.

    Article  Google Scholar 

  45. Munir, H., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2017). User association in 5G heterogeneous networks exploiting multi-slope path loss model. In 2017 2nd Workshop on recent trends in telecommunications research (RTTR) (pp. 1–5).

  46. Ali, S., Aslam, M. I., & Ahmed, I. (2019). Analysis of downlink uplink decoupled dense heterogeneous cellular network based on user association using multi-slope path loss model. Advances in Electrical and Computer Engineering, 19(2), 45–52. https://doi.org/10.4316/AECE.2019.02006.

    Article  Google Scholar 

  47. Ali, S., Aslam, M. I., & Ahmed, I. (2019). Uplink coverage probability and spectral efficiency for downlink uplink decoupled dense heterogeneous cellular network using multi-slope path loss model. Telecommunication Systems,. https://doi.org/10.1007/s11235-019-00587-3.

    Article  Google Scholar 

  48. Castellanos, C., & Ubeda et al. (2008). Performance of uplink fractional power control in UTRAN LTE. In VTC Spring 2008—IEEE vehicular technology conference, Singapore (pp. 2517–2521). https://doi.org/10.1109/VETECS.2008.554.

  49. Coupechoux, M., & Kelif, J. (2011). How to set the fractional power control compensation factor in LTE? In 34th IEEE Sarnoff symposium, Princeton NJ (pp. 1–5). https://doi.org/10.1109/SARNOF.2011.5876464.

  50. Leon-Garcia, A. (2008). Probability, statistics, and random processes for electrical engineering (3rd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  51. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables andstochastic processes (4th ed., Vol. 5). New York: McGraw-Hill.

    Google Scholar 

  52. Rappaport, T. S. (1996). Wireless communication principles and practice (2nd ed.). New York: Pearson.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundus Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Appendix A: Coupled association probabilities

In coupled association, the UE connects with the BS from which it receives strongest downlink received power (DRP). Hence there are two association cases possible in coupled association: (1) MBS tier association, denoted by \(P_{MBS_C}\) (2) SBS tier association, denoted by \(P_{SBS_C}\). We have derived UE association probability for MBS tier, which is defined as the following:

$$\begin{aligned} \begin{aligned} {P_{{MBS_C}}} = \Pr ({P_M}{L_M} > {P_S}{L_S}) \end{aligned} \end{aligned}$$
(41)

Equation (41) can be written as:

$$\begin{aligned} \begin{aligned} P_{MB{S_C}} = \Pr ({y_M} < {\tilde{P}}^{\nicefrac {1}{\alpha M}}y_S^{1/\tilde{\alpha }}) \end{aligned} \end{aligned}$$
(42)

Solving (42) using technique discussed in Sect. 3, \(P_{MBS_C}\) is found to be:

$$\begin{aligned} \begin{aligned} {P_{MB{S_C}}} = 1 - \int \limits _0^\infty {2\pi {\lambda _M}\tilde{\lambda }{v_S}{e^{ - \pi {\lambda _M}({\tilde{P}}^{\nicefrac {2}{\alpha M}}v_S^{2\tilde{\alpha }} + \tilde{\lambda }v_S^2)}}d{v_S}} \end{aligned} \end{aligned}$$
(43)

Consequently, the SBS tier association probability can be found by the following expression:

$$\begin{aligned} \begin{aligned} P_{SBS_C}=1-P_{MBS_C} \end{aligned} \end{aligned}$$
(44)

B Appendix B: Coupled uplink coverage probability and average spectral efficiency

The uplink coverage probability provided that the UE is positioned in the decoupled region (shown in Fig. 9) and associates with MBS in coupled manner is defined as the following expression:

Fig. 9
figure 9

DUDe system model showing decoupled region where UE may associate itself with the MBS in the downlink and SBS in the uplink

$$\begin{aligned} \begin{aligned} p_{Coupled,2}^{UL}&= \int \limits _0^\infty {\Pr [SINR_{Coupled,2}^{UL}> \tau ]{f_{{V_{M,2}}}}({v_M})d{v_M}}\\&= \int \limits _0^\infty {\Pr \left\{ {\frac{{{P_d}{h_{{v_M}}}y_M^{ {\alpha _M}(\epsilon -1)}}}{{{I_{{v_M}}} + \sigma _{{v_M}}^2}} > \tau } \right\} {f_{{v_{M,2}}}}({v_M})d{v_M}} \end{aligned} \end{aligned}$$
(45)

where \(SINR_{Coupled,2}^{UL}\) is the uplink SINR measured from the MBS serving the test UE provided that the UE is located in the decoupled region, \(v_M\) is defined as the distance between tagged MBS and test UE, \(I_{v_M }\) is the total uplink interference experienced by the tagged MBS, \(\sigma _{v_M }^2\) represent noise power and \( f_{V_M ,2}^{} (v_M )\) is the distance distribution conditioned that the test UE is present in the decoupled region and found to be:

$$\begin{aligned} \begin{aligned} {f_{{V_{M,2}}}}(v_M) = \frac{1}{{{P_2}}}({{e^{ - \pi {\lambda _S}{{({1/{\tilde{P}}})}^{\nicefrac {2\bar{\alpha }}{{\alpha _M}}}} }}v_M^{2\bar{\alpha }}} - {e^{ - \pi {\lambda _S}v_M^{2\bar{\alpha }}}}) \end{aligned} \end{aligned}$$
(46)

The total uplink interference, \(I_{v_M }\), experienced by the tagged MBS is defined as the following expression:

$$\begin{aligned} \begin{aligned} {I_{{v_M}}}&= \sum \limits _{{Z_{}} \in {\varPhi _{_{{I_{d,M}}}}}} {{P_d}{{\left\| {{Z_{i,M}}} \right\| }^{ - {\alpha _M}}}R_{i,M}^{{\alpha _M}\varepsilon }{h_{{Z_{i,M}}}}}\\&\quad + \sum \limits _{{Z_{i,S}} \in {\varPhi _{_{{I_{d,S}}}}}} {{P_d}{{\left\| {{Z_{i,S}}} \right\| }^{ - {\alpha _M}}}R_{i,S}^{{\alpha _S}\varepsilon }{h_{{Z_{i,S}}}}} \end{aligned} \end{aligned}$$
(47)

Using (47), we solve for Laplacian for interference \(I_{v_M }\), which is found to be:

$$\begin{aligned}&{\mathcal {L}_{{I_{{v_M}}}}}\nonumber \\&\quad = \exp \left( { - 2\pi {\lambda _M}\int \limits _0^\infty {\int \limits _0^{z_M^2} \left( {\frac{{\pi {\lambda _M}{e^{ - \pi {\lambda _M}{u_M}}}{z_M}d{u_M}d{z_M}}}{{1 + {\tau ^{ - 1}}{{\left( {{{{{z_M}}}/ {{{v_M}}}}} \right) }^{{\alpha _M}}}u_M^{{{{ - {\alpha _M}\varepsilon }}/ {2}}}}}} \right) } } \right) \nonumber \\&\qquad \exp \left( { - 2\pi {\lambda _S}\int \limits _0^\infty {\int \limits _0^{z_S^2} {\left( {\frac{{\pi {\lambda _S}{e^{ - \pi {\lambda _S}{u_S}}}{z_S}d{u_S}d{z_S}}}{{1 + {\tau ^{ - 1}}{{\left( {{{{{z_S}}}/ {{{v_M}}}}} \right) }^{{\alpha _M}}}u_S^{{{{ - {\alpha _M}\varepsilon }}/ {{2\tilde{\alpha }}}}}}}} \right) } } } \right) \nonumber \\ \end{aligned}$$
(48)

Using (48), and assuming \(\epsilon =0\) and \(\alpha _M=4\), the coupled uplink coverage probability \(p_{Coupled,2}^{UL}\) is found and presented in (49). Using (49), the coupled uplink average spectral efficiency is calculated and shown in (50).

$$\begin{aligned}&p_{Coupled,2}^{UL} \nonumber \\&\quad = \int \limits _0^\infty \exp \left( { - 2\pi {\lambda _M}\int \limits _0^\infty {\left( {\frac{{\left( {1 - {e^{ - \pi {\lambda _M}z_M^2}}} \right) {z_M}d{z_M}}}{{1 + {\tau ^{ - 1}}{{\left( {{{{{z_M}}}/ {{{v_M}}}}} \right) }^4}}}} \right) } } \right) \nonumber \\&\qquad \exp \left( { - 2\pi {\lambda _S}\int \limits _0^\infty {\left( {\frac{{\left( {1 - {e^{ - \pi {\lambda _S}z_S^2}}} \right) {z_S}d{z_S}}}{{1 + {\tau ^{ - 1}}{{\left( {{{{{z_S}}} / {{{v_M}}}}} \right) }^4}}}} \right) } } \right) e^{ - \tau \sigma _{v_M }^2 P_d^{ - 1} v_M^{ -4}}\nonumber \\&\qquad \frac{1}{{{P_2}}}\left( {{e^{ - \pi {\lambda _S}{{({{1} / {{\tilde{P}}}})}^{{{{2\bar{\alpha }}}/ {{{\alpha _M}}}}}}v_M^{2\bar{\alpha }}}} - {e^{ - \pi {\lambda _S}v_M^{2\bar{\alpha }}}}} \right) {f_{{v_M}}}({v_M})d{v_M} \end{aligned}$$
(49)
$$\begin{aligned}&C_{Coupled,2}^{UL} \nonumber \\&\quad = \frac{{{\lambda _M}}}{{({\lambda _M} + {\lambda _S}){P_1}}}\left( {{{\log }_2}(1 + \tau )} \right) \int \limits _0^\infty \nonumber \\&\qquad \exp \left( { - 2\pi {\lambda _M}\int \limits _0^\infty {\left( {\frac{{\left( {1 - {e^{ - \pi {\lambda _M}z_M^2}}} \right) {z_M}d{z_M}}}{{1 + {\tau ^{ - 1}}{{\left( {{{{{z_M}}}/ {{{v_M}}}}} \right) }^4}}}} \right) } } \right) \nonumber \\&\qquad \exp \left( { - 2\pi {\lambda _S}\int \limits _0^\infty {\left( {\frac{{\left( {1 - {e^{ - \pi {\lambda _S}z_S^2}}} \right) {z_S}d{z_S}}}{{1 + {\tau ^{ - 1}}{{\left( {{{{{z_S}}} / {{{v_M}}}}} \right) }^4}}}} \right) } } \right) e^{ - \tau \sigma _{v_M }^2 P_d^{ - 1} v_M^{ -4}}\nonumber \\&\qquad \frac{1}{{{P_2}}}\left( {{e^{ - \pi {\lambda _S}{{({{1} /{{\tilde{P}}}})}^{{{{2\bar{\alpha }}}/ {{{\alpha _M}}}}}}v_M^{2\bar{\alpha }}}} - {e^{ - \pi {\lambda _S}v_M^{2\bar{\alpha }}}}} \right) {f_{{v_M}}}({v_M})d{v_M} \end{aligned}$$
(50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Aslam, M.I., Ahmed, I. et al. Analysis of the decoupled uplink downlink technique for varying path loss exponent in multi-tier HetNet. Telecommun Syst 74, 497–510 (2020). https://doi.org/10.1007/s11235-020-00661-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00661-1

Keywords

Navigation