Skip to main content
Log in

Throughput optimization of cooperative non orthogonal multiple access

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper derives the outage and packet error probabilities of Non Orthogonal Multiple Access (NOMA) systems. In the first time slot, the Base Station transmits a combination of two symbols \(s_w\) and \(s_s\) dedicated for weak and strong users. This signal is received by the two users and a relay. In the second time slot, the relay amplifies the received signal to the two users. Both users use the signal with the highest Signal to Interference plus Noise Ratio among direct and relayed signals. The weak user detects only its signal. Strong user first detects symbol \(s_w\) of weak user. After removing the contribution of weak user, strong user detects its own symbol \(s_s\). In this article, expressions for outage probability, Packet Error Probability and the throughput of cooperative NOMA are derived. We also optimize the power allocated to weak and strong users to maximize the system throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, Q. C., Niu, H., Papathanassiou, A. T., & Wu, G. (2014). 5G network capacity: Key elements and technologies. IEEE Vehicular Technology Magazine, 9(1), 71–78.

    Article  Google Scholar 

  2. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System- level performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proceedings of the IEEE international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 611–615).

  3. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communication Letters, 19(8), 1462–1465.

    Article  Google Scholar 

  4. Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Communications Letters, 5(4), 416–419.

    Article  Google Scholar 

  5. Men, J., & Ge, J. (2015). Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Communications Letters, 19(10), 1686–1689.

    Article  Google Scholar 

  6. Niu, Y., Gao, C., Li, Y., Su, L., & Jin, D. (2016). Exploiting multi-hop relaying to overcome blockage in directional mmwave small cells. Journal of Communications and Networks, 18(3), 364–374.

    Article  Google Scholar 

  7. Kim, J. B., & Lee, I. H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communication Letters, 19(11), 2037–2040.

    Article  Google Scholar 

  8. Zhong, C., & Zhang, Z. (2016). Non-orthogonal multiple access with co-operative full-duplex relaying. IEEE Communication Letters, 20(12), 2478–2481.

    Article  Google Scholar 

  9. Liu, Y. I., Ding, Z., Elkashlan, M., & Vincent Poor, H. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.

    Article  Google Scholar 

  10. Varshney, L. (2008). Transporting information and energy simultaneously. In Proceedings of the IEEE international symposium on information theory (ISIT), Toronto, ON, Canada (pp. 1612–1616).

  11. Sun, H., Zhou, F., Hu, R. Q., & Hanzo, L. (2019). Robust beamforming design in a NOMA cognitive radio network relying on SWIPT. IEEE Journal on Selected Areas in Communications, 37(1), 142–155. (To appear in 2019).

    Article  Google Scholar 

  12. Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016). Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(12), 10152–10157.

    Article  Google Scholar 

  13. Bhattacharjee, S., Acharya, T., & Bhattacharya, U. (2018). NOMA inspired multicasting in cognitive radio networks. IET Communications, 12(15), 1845–1853.

    Article  Google Scholar 

  14. Zhou, F., Chu, Z., Sun, H., & Leung, V. C. M. (2018). Resource allocation for secure MISO-NOMA cognitive radios relying on SWIPT. In 2018 IEEE International Conference on Communications (ICC) (pp. 1–6).

  15. Liu, M., Song, T., & Gui, G. (2018). Deep cognitive perspective: Resource allocation for NOMA based heterogeneous IoT with imperfect SIC. IEEE Internet of Things Journal, 6, 2885–2894. (Early Access).

    Article  Google Scholar 

  16. Xu, L., Zhou, Y., Wang, P., & Liu, W. (2018). Max-min resource allocation for video transmission in NOMA-based cognitive wireless networks. IEEE Transactions on Communications, 66(11), 5804–5813.

    Article  Google Scholar 

  17. Li, B., Qi, X., Huang, K., Fei, Z., Zhou, F., & Hu, R. Q. (2018). Security-reliability tradeoff analysis for cooperative NOMA in cognitive radio networks. IEEE Transactions on Communications, 67, 83–96. (Early Access).

    Article  Google Scholar 

  18. Wang, D., & Men, S. (2018). Secure energy efficiency for NOMA based cognitive radio networks with nonlinear energy harvesting. IEEE Access, 6, 62707–62716.

    Article  Google Scholar 

  19. Wei, L., Jing, T., Fan, X., Wen, Y., & Huo, Y. (2018). The secrecy analysis over physical layer in NOMA-enabled cognitive radio networks. In 2018 IEEE international conference on communications (ICC) (pp 1– 6).

  20. Yue, X., Liu, Y., Kang, S., & Nallanathan, A. (2017). Performance analysis of NOMA with fixed gain relaying over Nakagami-m fading channels. IEEE Access, 5, 5445–5454.

    Article  Google Scholar 

  21. Men, J., & Ge, J. (2015). Performance analysis of non-orthogonal multiple access in downlink cooperative network. IET Communications, 9(18), 2267–2273.

    Article  Google Scholar 

  22. Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.

    Article  Google Scholar 

  23. Abramowitz, M., & Stegun, I. A. (1948). Handbook of mathematical functions: With formulas, graphs, and mathematical tables (1st ed., p. 196). North Chelmsford: Courier Corporation.

    Google Scholar 

  24. Vaughan, R. J., & Venables, W. N. (1972). Permanent expressions for order statistics densities. Journal of the Royal Statistical Society: Series B (Methodological), 34, 308–310.

    Google Scholar 

Download references

Acknowledgements

This work was supported by King Abdulaziz University (Grant No. This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia, under grant TBD. The authors, therefore, acknowledge with thanks the DSR for technical and financial support.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan Alnwaimi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The channel gain of weak user is lower than that of strong user i.e.

$$\begin{aligned} |h_{BSu_w}|^2<|h_{BSu_s}|^2 \end{aligned}$$
(50)

Therefore, we have

$$\begin{aligned} |h_{BSu_w}|^2=min(|h_{BSu_1}|^2,|h_{BSu_2}|^2) \end{aligned}$$
(51)

We deduce

$$\begin{aligned}&P(|h_{BSu_w}|^2\le x)=P(min(|h_{BSu_1}|^2,|h_{BSu_2}|^2)\le x)\nonumber \\&\quad =1-P(min(|h_{BSu_1}|^2,|h_{BSu_2}|^2)> x) \end{aligned}$$
(52)

If \(h_{BSu_1}\) and \(h_{BSu_2}\) are independent random variables (r.v.), we deduce

$$\begin{aligned}&P(|h_{BSu_w}|^2\le x)\nonumber \\&\quad =1-P(|h_{BSu_1}|^2> x)P(|h_{BSu_2}|^2> x) \end{aligned}$$
(53)

For Rayleigh fading channels \(|h_{BSu_1}|^2\) and \(|h_{BSu_2}|^2\) are exponentially distributed with mean

$$\begin{aligned} E(|h_{BSu_i}|^2)=\frac{1}{\lambda _{BSu_i}} \end{aligned}$$
(54)

for \(i=1,2\).

Therefore, we can write

$$\begin{aligned} P(|h_{BSu_w}|^2\le x)=1-e^{-x(\lambda _{BSu_1}+\lambda _{BSu_2})} \end{aligned}$$
(55)

We have

$$\begin{aligned} |h_{BSu_s}|^2=max(|h_{BSu_1}|^2,|h_{BSu_2}|^2) \end{aligned}$$
(56)

We deduce

$$\begin{aligned} P(|h_{BSu_s}|^2\le x)=P(max(|h_{BSu_1}|^2,|h_{BSu_2}|^2)\le x) \end{aligned}$$
(57)

If \(h_{BSu_1}\) and \(h_{BSu_2}\) are independent random variables (r.v.), we deduce

$$\begin{aligned}&P(|h_{BSu_s}|^2\le x)=P(|h_{BSu_1}|^2\le x)P(|h_{BSu_2}|^2\le x)\nonumber \\&\quad =(1-e^{-x\lambda _{BSu_1}})(1-e^{-x\lambda _{BSu_2}}) \end{aligned}$$
(58)

Appendix B

Using (6), we have

$$\begin{aligned}&P(\Gamma _{BSu_w}\le x)=P\left( \frac{|h_{BSu_w}|^2\mu b_w}{1+|h_{BSu_w}|^2\mu b_s}\le x\right) \nonumber \\&\quad =P\left( |h_{BSu_w}|^2 \le \frac{x}{\mu (b_w-b_sx)}\right) \end{aligned}$$
(59)

Using the results of “Appendix A”, we deduce

$$\begin{aligned} P(\Gamma _{BSu_w}\le x)=1-e^{-\frac{x}{\mu (b_w-b_sx)}(\lambda _{BSu_1}+\lambda _{BSu_2})} \end{aligned}$$
(60)

Using (13), the outage probability of relayed link of weak user is expressed as

$$\begin{aligned}&P(\Gamma _{ru_w}\le x)\nonumber \\&\quad =P\left( \frac{|h_{BSr}|^2|h_{ru_w}|^2b_w\mu }{|h_{BSr}|^2|h_{ru_w}|^2b_s\mu +|h_{ru_w}|^2+C}\le x \right) \end{aligned}$$
(61)

We deduce

$$\begin{aligned}&P(\Gamma _{ru_w}\le x)=P(|h_{BSr}|^2|h_{ru_w}|^2\mu (b_w-b_sx)\nonumber \\&\quad \le x|h_{ru_w}|^2+xC) \end{aligned}$$
(62)

Let

$$\begin{aligned} \epsilon =\frac{x}{\mu (bf-b_sx)} \end{aligned}$$
(63)

Therefore, we can write

$$\begin{aligned}&P(\Gamma _{ru_w}\le x)=P(|h_{BSr}|^2|h_{ru_w}|^2\le \epsilon |h_{ru_w}|^2+\epsilon C)\nonumber \\&\quad =P(|h_{ru_w}|^2(|h_{BSr}|^2-\epsilon )\le \epsilon C) \end{aligned}$$
(64)

We deduce

$$\begin{aligned}&P(\Gamma _{ru_w}\le x)=P(|h_{ru_w}|^2(|h_{BSr}|^2-\epsilon )\nonumber \\&\quad \le \epsilon C,|h_{BSr}|^2<\epsilon )+P(|h_{ru_w}|^2(|h_{BSr}|^2-\epsilon )\nonumber \\&\quad \le \epsilon C,|h_{BSr}|^2\ge \epsilon ) \end{aligned}$$
(65)

The first term of (33) is equal to

$$\begin{aligned}&P(|h_{ru_w}|^2(|h_{BSr}|^2-\epsilon )\le \epsilon C,|h_{BSr}|^2<\epsilon )\nonumber \\&\quad =P(|h_{ru_w}|^2(|h_{BSr}|^2-\epsilon )\nonumber \\&\quad \le \epsilon C| |h_{BSr}|^2<\epsilon )P(|h_{BSr}|^2<\epsilon ) \nonumber \\&\quad =P(|h_{BSr}|^2<\epsilon )=1-e^{-\epsilon \lambda _{BSr}} \end{aligned}$$
(66)

The second term of (33) is equal to

$$\begin{aligned}&P(|h_{ru_w}|^2(|h_{BSr}|^2-\epsilon )\le \epsilon C,|h_{BSr}|^2\ge \epsilon )\nonumber \\&\quad =\int _{\epsilon }^{+\infty }\lambda _{Bsr}e^{-\lambda _{Bsr}y}\int _0^{\frac{\epsilon C}{y-\epsilon }}\lambda _{ru_w}e^{-\lambda _{ru_w}z}dzdy \nonumber \\&\quad =\int _{\epsilon }^{+\infty }\lambda _{Bsr}e^{-\lambda _{Bsr}y}[1-e^{-\lambda _{ru_w}\frac{\epsilon C}{y-\epsilon }}]dy \end{aligned}$$
(67)

Let \(u=y-\epsilon \), we have

$$\begin{aligned}&P(|h_{ru_w}|^2(|h_{BSr}|^2-\epsilon )\le \epsilon C,|h_{BSr}|^2\ge \epsilon )\nonumber \\&\quad =\int _{0}^{+\infty }\lambda _{Bsr}e^{-\lambda _{Bsr}(u+\epsilon )}[1-e^{-\lambda _{ru_w}\frac{\epsilon C}{u}}]dy \end{aligned}$$
(68)

We have [23]

$$\begin{aligned} \int _0^{+\infty }e^{-\frac{b}{4x}-ax}dx=\sqrt{\frac{b}{a}}K_1(\sqrt{ba}) \end{aligned}$$
(69)

where \(K_1(.)\) is the modified Bessel function of second kind and first order.

Therefore, we obtain

$$\begin{aligned}&P(|h_{ru_w}|^2(|h_{BSr}|^2-\epsilon )\le \epsilon C,|h_{BSr}|^2\ge \epsilon )\nonumber \\&\quad =e^{-\lambda _{BSr}\epsilon }\left[ 1-2\sqrt{\frac{\lambda _{ru_w}\epsilon C}{\lambda _{BSr}}}K_1(2\sqrt{\lambda _{ru_w}\epsilon C\lambda _{BSr}})\right] \end{aligned}$$
(70)

Finally, (33), (34) and (38) give the outage probability of weak user is written as

$$\begin{aligned}&P(\Gamma _{ru_w}\le x)=1-e^{-\epsilon \lambda _{BSr}}\nonumber \\&\quad +e^{-\lambda _{BSr}\epsilon }\left[ 1-2\sqrt{\frac{\lambda _{ru_w}\epsilon C}{\lambda _{BSr}}}K_1(2\sqrt{\lambda _{ru_w}\epsilon C\lambda _{BSr}})\right] \end{aligned}$$
(71)

Appendix C

The first term of (17) is expressed as

$$\begin{aligned}&1-P(\Gamma _{BSu_s}^{(1)}> x,\Gamma _{BSu_s}^{(2)}> x)\nonumber \\&\quad =1-P\left( \frac{|h_{BSu_s}|^2b_w\mu }{1+|h_{BSu_s}|^2b_s\mu }>,|h_{BSu_s}|^2b_s\mu>x\right) \nonumber \\&\quad =1-P(|h_{BSu_s}|^2>\alpha ) \end{aligned}$$
(72)

where

$$\begin{aligned} \alpha =max\left( \frac{x}{b_s\mu },\frac{x}{b_w\mu -b_s\mu x}\right) \end{aligned}$$
(73)

Using the results of “Appendix A” (26), we deduce

$$\begin{aligned}&1-P(\Gamma _{BSu_s}^{(1)}> x,\Gamma _{BSu_s}^{(2)}> x)\nonumber \\&\quad =(1-e^{-\alpha \lambda _{BSu_1}})(1-e^{-\alpha \lambda _{BSu_2}}). \end{aligned}$$
(74)

The second term of (17) is expressed as

$$\begin{aligned}&1-P(\Gamma _{ru_s}^{(1)}> x,\Gamma _{ru_s}^{(2)}> x) \nonumber \\&\quad =1-P\left( \frac{|h_{BSr}|^2|h_{ru_s}|^2b_w\mu }{C+|h_{BSr}|^2|h_{ru_s}|^2b_s\mu +|h_{ru_s}|^2} \right. \nonumber \\&\left. \quad>x,\frac{|h_{BSr}|^2|h_{ru_s}|^2b_s\mu }{C+|h_{ru_s}|^2}>x\right) \nonumber \\&\quad =1-P(|h_{ru_s}|^2>\frac{Cb}{|h_{BSr}|^2-b},|h_{BSr}|^2>b) \end{aligned}$$
(75)

where

$$\begin{aligned} b=max(\epsilon ,a) \end{aligned}$$
(76)
$$\begin{aligned} a=\frac{x}{b_s\mu } \end{aligned}$$
(77)
$$\begin{aligned} \epsilon =\frac{x}{\mu (bf-b_sx)} \end{aligned}$$
(78)

Therefore, last equation gives

$$\begin{aligned}&1-P(\Gamma _{ru_s}^{(1)}> x,\Gamma _{ru_s}^{(2)}> x)=1\nonumber \\&\quad -\int _b^{+\infty }\lambda _{BSr}e^{-\lambda _{BSr}y}P\left( |h_{ru_s}|^2>\frac{Cb}{y-b}\right) dy \nonumber \\&\quad =1-\int _b^{+\infty }\lambda _{BSr}e^{-\lambda _{BSr}y}e^{-\lambda _{ru_s}\frac{Cb}{y-b}}dy \end{aligned}$$
(79)

Let \(z=y-b\), we deduce

$$\begin{aligned}&1-P(\Gamma _{ru_s}^{(1)}> x,\Gamma _{ru_s}^{(2)}> x)\nonumber \\&\quad =1-e^{-\lambda _{BSr}b}\lambda _{BSr}\int _0^{+\infty }e^{-\lambda _{BSr}z}e^{-\lambda _{ru_s}\frac{Cb}{z}}dz \nonumber \\&\quad =1-2e^{-\lambda _{BSr}b}\lambda _{BSr}\sqrt{\frac{\lambda _{ru_s}Cb}{\lambda _{BSr}}}K_1(2\sqrt{\lambda _{ru_s}Cb\lambda _{BSr}}) \end{aligned}$$
(80)

Using (42) and (48), the outage probability of strong user is written as

$$\begin{aligned}&P_{outage,s}(x)=(1-e^{-\alpha \lambda _{BSu_1}})(1-e^{-\alpha \lambda _{BSu_2}})\nonumber \\&\quad \times \left[ 1-2e^{-\lambda _{BSr}b}\lambda _{BSr}\sqrt{\frac{\lambda _{ru_s}Cb}{\lambda _{BSr}}}K_1(2\sqrt{\lambda _{ru_s}Cb\lambda _{BSr}})\right] \nonumber \\ \end{aligned}$$
(81)

Appendix D

User \(u_i\) has the i-th largest channel gain. Its PDF is given by [24]

$$\begin{aligned}&p_{|h_{BSu_i}|^2}(x)\nonumber \\&\quad =\sum _{q=1}^N \lambda _{BSu_q} e^{-x\lambda _{BSu_q}}\sum _{p_1,p_2,\ldots ,p_{N-1}} \prod _{j=1}^{N-i}[1-e^{-x\lambda _{BSu_{p_j}}}]\nonumber \\&\qquad \prod _{l=N-i+1}^{N-1}e^{-x\lambda _{BSu_{p_l}}} \end{aligned}$$
(82)

where \(p_1\), \(p_2\), ..., \(p_N\) are relay indexes different from q, \(p_1\ne p_2 \ne p_{N-1}\), \(p_1<p_2<\cdots <p_{N-i}\) and \(p_{N-i+1}<p_{N-i+2}<\cdots <p_{N-1}\).

We have

$$\begin{aligned} \prod _{j=1}^{N-i}\![1-e^{-x\lambda _{BSu_{p_j}}}]\!=\!\sum _{n=0}^{2^{N-i}-1}(-1)^{d(n)}e^{-x\sum _{m=1}^{N-i}\!\lambda _{BSu_{p_m}}b_n(m)}.\nonumber \\ \end{aligned}$$
(83)

Therefore, (82) and (83) give

$$\begin{aligned} p_{|h_{BSu_i}|^2}(x)=\sum _{q=1}^N \!\sum _{p_1,p_2,\ldots ,p_N}\lambda _{BSu_q} \!\sum _{n=0}^{2^{N-i}-1}(-1)^{d(n)}e^{-xf_{q,n,i}}\nonumber \\ \end{aligned}$$
(84)

where

$$\begin{aligned} f_{q,n,i}=\lambda _{BSu_q}+\sum _{l=N-i+1}^{N-1}\lambda _{Su_{p_l}}+\sum _{m=1}^{N-i}\lambda _{BSu_{p_m}}b_n(m) \end{aligned}$$
(85)

The CDF of the channel gain of i-th user is deduced by a primitive of the PDF

$$\begin{aligned}&P_{|h_{BSu_i}|^2}(x)\nonumber \\&\quad =\sum _{q=1}^N \sum _{p_1,p_2,\ldots ,p_N}\lambda _{BSu_q} \sum _{n=0}^{2^{N-i}-1}(-1)^{d(n)}[1-\frac{e^{-xf_{q,n,i}}}{f_{q,n,i}}].\nonumber \\ \end{aligned}$$
(86)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnwaimi, G., Boujemaa, H. & Arshad, K. Throughput optimization of cooperative non orthogonal multiple access. Telecommun Syst 76, 359–370 (2021). https://doi.org/10.1007/s11235-020-00726-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00726-1

Keywords

Navigation