Skip to main content
Log in

Lama: Link characteristic aware multicast data dissemination for computational RFIDs

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Computational radio frequency identification can be successfully employed in a range of applications. The efficient data dissemination is a building block for useful functions such as parameter configuration, code debug fixing, and wireless reprogramming. Many recent data dissemination protocols have adopted transmission methods from a reader to a single tag following EPC C1G2. Even if the same data need to be transmitted to multiple tags, they can only be distributed individually; however, tags in the reader antenna coverage area can hear commands from the reader, which motivates us to pursue a multicast data dissemination scheme that is compatible with the existing protocol. In this paper, we propose Lama, an efficient multicast data dissemination protocol that considers tag link characteristics (link quality and charging efficiency). This method improves the efficiency of data dissemination by selecting an appropriate master tag. Experiments based on a commercial reader demonstrate that Lama reduces the dissemination delay compared with state-of-the-art protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Gollakota, S., Reynolds, M. S., Smith, J. R., & Wetherall, D. J. (2014). The emergence of rf-powered computing. Computer, 47(1), 32–39.

    Article  Google Scholar 

  2. Zhao, Y., La Marca, A., & Smith, J. R. (2014). A battery-free object localization and motion sensing platform. In Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing (pp. 255–259). ACM.

  3. Dementyev, A., & Smith, J. R. (2013). A wearable UHF RFID-based EEG system. In IEEE international conference on RFID (pp. 1–7). IEEE.

  4. Farris, I., Felini, C., Pizzi, S., Merenda, M., Iera, A., Della Corte, F., & Molinaro, A. (2015). Enabling communication among smart tags in an UHF RFID local area network. In IEEE 2nd world forum on internet of things (WF-IoT) (pp. 524–529). IEEE.

  5. Aantjes, H., Majid, A. Y., Pawelczak, P., Tan, J., Parks, A., & Smith, J. R. (2017). Fast downstream to many (computational) RFIDS. In INFOCOM 2017-IEEE conference on computer communications (pp. 1–9). IEEE.

  6. Caizzone, S., & DiGiampaolo, E. (2015). Wireless passive RFID crack width sensor for structural health monitoring. IEEE Sensors Journal, 15(12), 6767–6774.

    Article  Google Scholar 

  7. Yeager, D., Zhang, F., Zarrasvand, A., George, N., Daniel, T., & Otis, B. (2013). Socwisp: A 9 \(\mu \)a, addressable gen2 sensor tag for biosignal acquisition. In Wirelessly powered sensor networks and computational RFID (pp. 57–78). Springer

  8. Halperin, D., & Heydt-Benjamin, T. S., et al. (2008). Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In 2008 IEEE symposium on security and privacy (sp 2008) (pp. 129–142). IEEE.

  9. Shu, Y., Gu, Y. J., & Chen, J. (2014). Dynamic authentication with sensory information for the access control systems. IEEE Transactions on Parallel and Distributed Systems, 25(2), 427–436.

    Article  Google Scholar 

  10. Zhu, B., Zhao, J., Li, D., Wang, H., Bai, R., Li, Y., et al. (2018). Cloud access control authentication system using dynamic accelerometers data. Concurrency and Computation: Practice and Experience, 30(20), e4474.

    Article  Google Scholar 

  11. Hu, P., Zhang, P., & Ganesan, D. (2015). Laissez-faire: Fully asymmetric backscatter communication. In ACM SIGCOMM computer communication review (Vol. 45, pp. 255–267). ACM.

  12. Gummeson, J., Zhang, P., & Ganesan, D. (2012). Flit: A bulk transmission protocol for rfid-scale sensors. In Proceedings of the 10th international conference on mobile systems, applications, and services (pp. 71–84). ACM.

  13. Zhang, P., et al. (2012). Blink: A high throughput link layer for backscatter communication. In Proceedings of the 10th international conference on mobile systems, applications, and services (pp. 99–112). ACM.

  14. Ou, J., Li, M., & Zheng, Y. (2015). Come and be served: Parallel decoding for cots RFID tags. In Proceedings of the 21st annual international conference on mobile computing and networking (pp. 500–511). ACM.

  15. Ransford, B. (2010). A rudimentary bootloader for computational RFIDS. UMass Amherst, Tech. Rep. UM-CS-2010-061.

  16. Wu, D., Lu, L., Hussain, M. J., & Yang, W. (2017). Remote firmware execution control in computational RFID systems. IEEE Sensors Journal, 17(8), 2524–2533.

    Article  Google Scholar 

  17. Wu, D., Hussain, M. J., Li, S., & Lu, L. (2016). R2: Over-the-air reprogramming on computational RFIDS. In IEEE international conference on RFID (pp. 1–8). IEEE.

  18. Tan, J., Pawełczak, P., Parks, A., & Smith, J. R. (2016). Wisent: Robust downstream communication and storage for computational RFIDS. In IEEE INFOCOM 2016—The 35th annual IEEE international conference on computer communications (pp. 1–9). IEEE.

  19. Gudipati, A., & Katti, S. (2011). Strider: Automatic rate adaptation and collision handling. In Proceedings of the ACM SIGCOMM 2011 conference (pp. 158–169).

  20. Kang, L., Kaishun, W., Zhang, J., Tan, H., & Ni, L. (2011). DDC: A novel scheme to directly decode the collisions in UHF RFID systems. IEEE Transactions on Parallel and Distributed Systems, 23(2), 263–270.

    Article  Google Scholar 

  21. Kong, L., He, L., Gu, Y., Wu, M. Y., & He, T. (2014). A parallel identification protocol for RFID systems. In IEEE INFOCOM 2014-IEEE conference on computer communications (pp. 154–162). IEEE.

  22. Khasgiwale, R. S., Adyanthaya, R. U., & Engels, D. W. (2009). Extracting information from tag collisions. In 2009 IEEE international conference on RFID (pp. 131–138). IEEE.

  23. Jin, M., He, Y., Meng, X., Zheng, Y., Fang, D., & Chen, X. (2019). Fliptracer: Practical parallel decoding for backscatter communication. IEEE/ACM Transactions on Networking, 27(1), 330–343.

    Article  Google Scholar 

  24. Chlipala, A., Hui, J., & Tolle, G. (2004). Deluge: Data dissemination for network reprogramming at scale. Technical Report. University of California, Berkeley.

  25. Ransford, B., Sorber, J., & Kevin, F. (2012). Mementos: System support for long-running computation on RFID-scale devices. ACM Sigplan Notices, 47(4), 159–170.

    Article  Google Scholar 

  26. Mirhoseini, A., Rouhani, B. D., Songhori, E., & Koushanfar, F. (2016). Chime: Checkpointing long computations on intermittently energized IOT devices. IEEE Transactions on Multi-Scale Computing Systems, 2(4), 277–290.

    Article  Google Scholar 

  27. Lucia, B., & Ransford, B. (2015). A simpler, safer programming and execution model for intermittent systems. ACM SIGPLAN Notices, 50(6), 575–585.

    Article  Google Scholar 

  28. Yang, W., Wu, D., Hussain, M. J., & Lu, L. (2015). Wireless firmware execution control in computational RFID systems. In IEEE international conference on RFID (pp. 129–136). IEEE.

  29. Su, Y., Gao, Y., Chesser, M., Kavehei, O., Sample, A., & Ranasinghe, D. (2019). Secucode: Intrinsic PUF entangled secure wireless code dissemination for computational RFID devices. IEEE Transactions on Dependable and Secure Computing.

  30. Zhao, J., Hao, W., Li, D., Li, Y., & Zhu, B. (2019). Lilac: Computable capabilities based high performance protocol for CRFID. IET Communications, 13(10), 1348–1355.

    Article  Google Scholar 

  31. Dong, W., Liu, Y., Wang, C., Liu, X., Chen, C., & Bu, J. (2011). Link quality aware code dissemination in wireless sensor networks. In 19th IEEE international conference on network protocols (ICNP) (pp. 89–98). IEEE.

  32. Sample, A. P., Yeager, D. J., Powledge, P. S., Mamishev, A. V., & Smith, J. R. (2008). Design of an RFID-based battery-free programmable sensing platform. IEEE Transactions on Instrumentation and Measurement, 57(11), 2608–2615.

    Article  Google Scholar 

  33. Zhang, H., Gummeson, J., Ransford, B., & Fu, K. (2011). Moo: A batteryless computational rfid and sensing platform. University of Massachusetts Computer Science Technical Report UM-CS-2011-020.

  34. Smith, J. R. (2013). Range scaling of wirelessly powered sensor systems. In Wirelessly powered sensor networks and computational RFID (pp. 3–12). Springer.

  35. He, D., Chen, J., Jiang, F., Yau, D. K. V., Xing, G., & Sun, Y. (2013). Energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 12(10), 1931–1942.

    Article  Google Scholar 

  36. Fu, L., Cheng, P., Gu, J. Y., Chen, G., & He, T. (2013). Minimizing charging delay in wireless rechargeable sensor networks. In INFOCOM, 2013 proceedings IEEE (pp. 2922–2930). IEEE.

  37. Berenguer, R., Rebollo, I., Zalbide, I., & Fernández, I. (2013). Battery-less wireless sensors based on low power UHF RFID tags. In Wirelessly powered sensor networks and computational RFID (pp. 79–109). Springer.

  38. Li, Y., Lingkun, F., Ying, Y., Sun, Y., Chi, K., & Zhu, Y. (2017). Goodput optimization via dynamic frame length and charging time adaptation for backscatter communication. Peer-to-Peer Networking and Applications, 10(3), 440–452.

    Article  Google Scholar 

  39. Zhang, P., & Ganesan, D. (2014). Enabling bit-by-bit backscatter communication in severe energy harvesting environments. In 11th USENIX symposium on networked systems design and implementation (NSDI 14) (pp. 345–357).

Download references

Acknowledgements

The research is supported by Education Innovation Fund of Ministry (No. 2019J02009), Applied Basic Research Program of Shanxi Province (No. 201901D211551), Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (No. 2019L1009, No. 2019L0473), Key Research Projects at School Level (No. 2019yzd002), Training tender research project at School Level (No. 2019yzb008). Shanxi Provincial “1331 Project” Key Discipline Construction Project (1331KSC). We thank all the anonymous reviewers and shepherd for their valuable comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jumin Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Luo, C., Liu, S. et al. Lama: Link characteristic aware multicast data dissemination for computational RFIDs. Telecommun Syst 76, 595–611 (2021). https://doi.org/10.1007/s11235-020-00742-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00742-1

Keywords

Navigation