Skip to main content
Log in

A dynamic network coding MAC protocol for power line communication

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Recently, power line communication (PLC) is receiving attention from academic and industry researchers worldwide. In particular, PLC systems have been largely investigated as a medium for transmitting control signals, diagnostic information, or data measured by sensors in Smart Grid. However, PLC systems face several challenges, such as multipath effects and impulsive noise, which may degrade data communication performance. To surpass such issues we propose CodePLC, a dynamic network coding MAC protocol for PLC. CodePLC relies on a single, yet dynamically chosen, relay node. This node stores and forwards linear combinations of PLC frames, which are then combined on their final destinations. We have evaluated the performance of CodePLC through simulations in a PLC system based on a time division multiple access orthogonal frequency-division multiplexing scheme. Simulation results indicate that, in broadcast transmissions, CodePLC enhances system performance. When compared to a PLC system that does not consider the use of CodePLC, based on a stop&wait MAC layer protocol, our new protocol presents an average of 115% of goodput increase. Moreover, CodePLC reduces the average network buffers occupancy by 112%. Finally, our protocol is capable of reducing the mean end-to-end latency by 400%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. In this context, a frame is the set of all messages transmitted during all time-slots of a TDMA round.

References

  1. Global Industry Analysts. (2015). MCP-7073: Power line communication (PLC) systems: A global strategic business report. Retrieved July 18, 2016, from http://www.strategyr.com/pressMCP-7073.asp.

  2. Markets and Markets. (2016). Power line carrier communication & PoE controller market worth 12.31 billion USD by 2022. Retrieved July 18, 2016, from http://www.marketsandmarkets.com/Market-Reports/power-line-communication-plc-market-912.html.

  3. Oliveira, R. M., Vieira, A. B., Latchman, H. A., & Ribeiro, M. V. (2019). Medium access control protocols for power line communication: A survey. IEEE Communications Surveys Tutorials, 21(1), 920–939.

    Article  Google Scholar 

  4. Francesco, C., Romano, F., & Andrea, T. (2017). An efficient network coding scheme for reliable multicast power line communications. Physical Communication, 25, 34–42.

    Article  Google Scholar 

  5. Dostert, K., Zimmermann, M., Waldeck, T., & Arzberger, M. (2000). Fundamental properties of the low voltage power distribution grid used as a data channel. Transactions on Emerging Telecommunications Technologies, 11, 297–306.

    Article  Google Scholar 

  6. Ezzine, S., Abdelkefi, F., Cances, J. P., Meghdadi, V., & Bouallegue, A. (2014). Joint network coding and OFDMA based MAC-layer in PLC networks. In Proceedings of the IEEE international symposium on power line communications and its applications (pp. 311–315).

  7. Adriano, M., Kazuya, T., Kenji, K., Masato, T., & Yuji, O. (2013). Cooperative transmission scheme between PLC and WLAN to improve TCP performance. In Proceedings of the IEEE pacific rim conference on communications, computers and signal processing (pp. 142–147).

  8. Gao, Q., Yu, J. Y., Chong, P. H. J., So, P. L., & Gunawan, E. (2008). Solutions for the “silent node” problem in an automatic meter reading system using power-line communications. IEEE Transactions on Power Delivery, 23(1), 150–156.

    Article  Google Scholar 

  9. Zimmermann, M., & Dostert, K. (2002). A multipath model for the powerline channel. IEEE Transactions on Communications, 50(4), 553–559.

    Article  Google Scholar 

  10. Güray, K., & Özgür, E. (2017). Adaptive modulation and coding technique under multipath fading and impulsive noise in broadband power-line communication. In Proceedings of the IEEE international conference on electrical and electronics engineering (pp. 1430–1434).

  11. Kim Charles, J., & Chouikha, M. F. (2002). Attenuation characteristics of high rate home-networking PLC signals. IEEE Transactions on Power Delivery, 17(4), 945–950.

    Article  Google Scholar 

  12. Dubey, A., & Mallik, R. K. (2015). PLC system performance with AF relaying. IEEE Transactions on Communications, 63(6), 2337–2345.

    Article  Google Scholar 

  13. Lee, J., & Kim, Y. (2014). Diversity relaying for parallel use of power-line and wireless communication networks. IEEE Transactions on Power Delivery, 29(3), 1301–1310.

    Article  Google Scholar 

  14. Mohsen, S. H., Ghosheh, A. H., & Mohammad, M. K. (2016). Capacity analysis of PLC point-to-point and relay channels. Transactions on Emerging Telecommunications Technologies, 47, 200–215.

    Google Scholar 

  15. Biagi, M. (2011). MIMO self-interference mitigation effects on power line relay networks. IEEE Communications Letters, 15(8), 866–868.

    Article  Google Scholar 

  16. Cheng, X., Cao, R., & Yang, L. (2013). Relay-aided amplify-and-forward powerline communications. IEEE Transactions on Smart Grid, 4(1), 265–272.

    Article  Google Scholar 

  17. Kim, Y., Choi, S., Kim, S., & Lee, J. (2012). Capacity of OFDM two-hop relaying systems for medium-voltage power-line access networks. IEEE Transactions on Power Delivery, 27(2), 886–894.

    Article  Google Scholar 

  18. Valencia, J., Oliveira, T. R., & Ribeiro, M. V. (2014). Cooperative power line communication: Analysis of Brazilian In-Home channels. In Proceedings of the IEEE international symposium on power line communications and its applications (pp. 301–305).

  19. Jiang, J., & Vincent Poor, H. (2013). Achievable rates for discrete memoryless relay channels with generalised feedback. Transactions on Emerging Telecommunications Technologies, 24, 212–231.

    Article  Google Scholar 

  20. Noori, M., & Lampe, L. (2013). Improving data rate in relay-aided power line communications using network coding. In Proceedings of the IEEE global communications conference (pp. 2975–2980).

  21. Lampe, L., & Han, V. A. (2011). On cooperative coding for narrow band PLC networks. International Journal of Electronics and Communications, 65(8), 681–687.

    Article  Google Scholar 

  22. Kim, K., Lee, H., Kim, Y., Lee, J., & Kim, S. (2012). Cooperative multihop AF relay protocol for medium-voltage power-line-access network. IEEE Transactions on Power Delivery, 27(1), 195–204.

    Article  Google Scholar 

  23. Vieira, L. F., Misra, A., & Gerla, M. (2007). Performance of network-coding in multi-rate wireless environments for multicast applications. In Proceedings of the IEEE military communications conference (pp. 1–6).

  24. Vieira Luiz Filipe, M., Mario, G., & Archan, M. (2013). Fundamental limits on end-to-end throughput of network coding in multi-rate and multicast wireless networks. Computer Networks, 57(17), 3267–3275.

    Article  Google Scholar 

  25. Júnior, N. D. S. R., Vieira Marcos, A. M., Vieira Luiz, F. M., & Gnawali, O. (2014). CodeDrip: Data dissemination protocol with network coding for wireless sensor networks. In Wireless sensor networks (pp. 34–49). Springer.

  26. Silveira, L. M. F., Oliveira Roberto, M., Ribeiro Moises, V., Vieira Luiz, F. M., Vieira Marcos, A. M., & Vieira Alex, B. (2016). CodePLC: A network coding MAC protocol for power line communication. In 2016 IEEE 41st conference on local computer networks (LCN) (pp. 643–646).

  27. Prior, R., Lucani Daniel, E., Phulpin, Y., Nistor, M., & Barros, J. (2014). Network coding protocols for smart grid communications. IEEE Transactions on Smart Grid, 5(3), 1523–1531.

    Article  Google Scholar 

  28. Yeung, R. W., Li, S.-Y. R., Cai, N., & Zhang, Z. (2006). Network coding theory. Foundation and trends in communications and information theory, 2 ed.

  29. Sachin, K., Rahul Hariharan, H., Wenjun, K. D., Muriel, M., & Jon, C. (2006). XORs in the air: Practical wireless network coding. ACM SIGCOMM Computer Communication Review, 36(4), 243–254.

    Article  Google Scholar 

  30. Ho, T., & Lun Desmond, S. (2008). Network coding: An introduction (1st ed.). Reino Unido: Cambridge University Press.

    Book  Google Scholar 

  31. Tseng, S.-M., Lee, T.-L., Ho, Y.-C., & Tseng, D.-F. (2015). Distributed space–time block codes with embedded adaptive AAF/DAF elements and opportunistic listening for multihop power line communication networks. International Journal of Communication Systems, 30(1), e2950.

    Article  Google Scholar 

  32. Dina, K., Katti Sachin, H., Wenjun, R. H., & Muriel, M. (2006). On practical network coding for wireless environments. IEEE International Zurich Seminar on Communications, 1, 84–85.

    Google Scholar 

  33. Sachin, K., Dina, K., Wenjun, H., Hariharan, R., & Muriel, M. (2006). The importance of being opportunistic: Practical network coding for wireless environments. Newsletter ACM SIGCOMM Computer Communication Review, 36(4), 243–254.

    Article  Google Scholar 

  34. Fragouli, C., Le Boudec, J.-Y., & Widmer, J. (2006). Network coding: An instant primer. ACM SIGCOMM Computer Communication Review, 36(1), 63–68.

    Article  Google Scholar 

  35. Vieira Luiz, F. M., & Vieira Marcos, A. M. (2017). Network coding for 5G network and D2D communication. In Proceedings of the symposium on QoS and security for wireless and mobile networks (pp. 113–120).

  36. Keshavarz-Haddad, A., & Riedi, R. H. (2014). Bounds on the benefit of network coding for wireless multicast and unicast. IEEE Transactions on Mobile Computing, 13(1), 102–115.

    Article  Google Scholar 

  37. Parimal, P., & Jean-Francois, C. (2010). Queueing analysis of a butterfly network for comparing network coding to classical routing. IEEE Transactions on Information Theory, 56(4), 1890–1908.

    Article  Google Scholar 

  38. Phulpin, Y., Barros, J., & Lucani, D. (2011). Network coding in smart grids. In Proceedings of the IEEE international conference on smart grid communications (pp. 49–54).

  39. Tsokalo, I., Matthiesen, B., & Fitzek, F. H. P. (2017). Approaching the limits in routing in power line communication exploiting network coding. In 2017 IEEE international symposium on power line communications and its applications (ISPLC) (pp. 1–6).

  40. Bilbao, J., Calvo, A., Armendariz, I., Crespo, P. M., & Medard, M. (2014). Reliable communications with network coding in narrowband powerline channel. In Proceedings of the IEEE international symposium on power line communications and its applications (pp. 316–321).

  41. Dzemo, B., Matej, Z., Aljo, M., Andrea, T., & Nermin, S. (2020). Error performance analysis and modeling of narrow-band PLC technology enabling smart metering systems. International Journal of Electrical Power and Energy Systems, 116, 105536.

    Article  Google Scholar 

  42. Ha, N. V., Van Hau, L., & Tsuru, M. (2020). Dynamic ACK skipping in TCP with network coding for power line communication networks. In 2020 22nd international conference on advanced communication technology (ICACT) (pp. 29–34).

  43. Ferreira, H. C., Lampe, L., & Newbury, J. (2010). Power line communications theory and applications for narrowband and broadband communications over power lines (1st ed.). London: Wiley.

    Book  Google Scholar 

  44. Goldfisher, S., & Tanabe, S. (2010). IEEE 1901 access system: An overview of its uniqueness and motivation. IEEE Communications Magazine, 48(10), 150–157.

    Article  Google Scholar 

  45. Recommendation, I. (2017). Narrowband orthogonal frequency division multiplexing power line communication transceivers for G3-PLC networks. https://www.itu.int/rec/T-REC-G.9903.

  46. Picorone, A. A. M., Amado, L. R., & Ribeiro, M. V. (2010). Linear and periodically time-varying PLC channels estimation in the presence of impulsive noise. In Proceedings of the IEEE international symposium on power line communications and its applications (pp. 255–260).

  47. Hormis, R., Berenguer, I., & Wang, X. (2006). A simple baseband transmission scheme for power line channels. IEEE Journal on Selected Areas in Communications, 24(7), 1351–1363.

    Article  Google Scholar 

  48. Colen Guillherme, R., Marques Cristiano, A. G., Oliveira Thiago, R., Campos Fabricio, P. V., & Ribeiro Moisés, V. (2013). Measurement setup for characterizing low-voltage and outdoor electric distribution grids for PLC systems. In Proceedings of the IEEE PES conference on innovative smart grid technologies Latin America (pp. 1–5).

  49. Oliveira, R., Facina Michelle, S. P., Ribeiro, M., & Vieira Alex, B. (2015). Performance evaluation of in-home broadband PLC systems using a cooperative MAC protocol. Computer Networks, 95, 62–76.

    Article  Google Scholar 

  50. Galli, S., & Logvinov, O. (2008). Recent developments in the standardization of power line communications within the IEEE. IEEE Communications Magazine, 46(7), 64–71.

    Article  Google Scholar 

  51. Brazilian National Telecomunications Agency. (2009). Technical Report, Resoluc̃ão Normativa 527. http://www.anatel.gov.br/legislacao/resolucoes/2009/101-resolucao-527.

  52. Tonello, A. M., Versolatto, F., & Pittolo, A. (2014). In-home power line communication channel: Statistical characterization. IEEE Transactions on Communications, 62(6), 2096–2106.

    Article  Google Scholar 

  53. Mohamed, T., Ahmed, Z., Fabienne, M., & Frederic, G. (2008). Indoor power-line communications channel characterization up to 100 MHz—Part II: Time-frequency analysis. IEEE Transactions on Power Delivery, 23(3), 1402–1409.

    Article  Google Scholar 

  54. Oliveira, R. M., Vieira, A. B., & Ribeiro, M. V. (2019). EPLC-CMAC: An enhanced cooperative MAC protocol for broadband PLC systems. Computer Networks, 153, 11–22.

    Article  Google Scholar 

  55. Craig Donald, C. (1996). Extensible hierarchical object-oriented logic simulation with an adaptable graphical user interface. Ph.D. thesis, Memorial University of Newfoundland.

  56. Andreadou, N., Kotsakis, E., & Masera, M. (2018). Smart meter traffic in a real LV distribution network. Energies, 11(5), 1–27.

    Article  Google Scholar 

  57. Ikpehai, A., Adebisi, B., & Kharel, R. (2016). Smart street lighting over narrowband PLC in a smart city: The triangulum case study. In 2016 IEEE 21st international workshop on computer aided modelling and design of communication links and networks (CAMAD) (pp. 242–247).

  58. IEEE Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications. 2010.

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001. Authors also acknowledge the financial support of CNPq and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Borges Vieira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, R.M., Vieira, L.F.M., Vieira, M.A.M. et al. A dynamic network coding MAC protocol for power line communication. Telecommun Syst 77, 359–375 (2021). https://doi.org/10.1007/s11235-021-00762-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00762-5

Keywords

Navigation