Skip to main content

Advertisement

Wireless energy transfer policies for cognitive radio based MAC in energy-constrained IoT networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Efficient energy transfer is crucial for a green base station with limited energy to replenish the energy of stand-alone devices in the Internet of Things (IoT). Cognitive radio (CR) is critical to satisfying the spectrum requirement for IoT devices. This paper proposes two wireless charging policies, namely, charging in residual multi-frame time and charging one energy unit at a time, for the random access multiple access control on CR-based green-energy networks. The novelty of the policies is to send wireless energy at appropriate timing and duration. Event-driven simulations are conducted to study the performances of the policies. Simulation results show that the two policies significantly yield high energy efficiency, and maintain throughput and quality-of services. Besides, the policy of charging one energy unit at a time outperforms the policy of charging in residual multi-frame time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chettri, L., & Bera, R. (2020). A comprehensive survey on Internet of Things (IoT) towards 5G wireless systems. IEEE Internet of Things Journal, 7(1), 16–32.

    Article  Google Scholar 

  2. Sharma, S. K., & Wang, X. (2020). Towards massive machine type communications in ultra-dense cellular IoT networks: Current issues and machine learning-assisted solutions. IEEE Communications Surveys & Tutorials, 22(1), 426–471.

    Article  Google Scholar 

  3. Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., & Markakis, E. K. (2020). A survey on the Internet of Things (IoT) forensics: Challenges, approaches, and open issues. IEEE Communications Surveys & Tutorials, 22(2), 1191–1221.

    Article  Google Scholar 

  4. Xia, N., Chen, H.-H., & Yang, C.-S. (2018). Radio resource management in machine-to-machine communications—A survey. IEEE Communications Surveys & Tutorials, 20(1), 791–828.

    Article  Google Scholar 

  5. Ali, A., Hamouda, W., & Uysal, M. (2015). Next generation M2M cellular networks: Challenges and practical considerations. IEEE Communications Magazine, 53(9), 18–24.

    Article  Google Scholar 

  6. Awin, F. A., Alginahi, Y. M., Abdel-Raheem, E., & Tepe, K. (2019). Technical issues on cognitive radio-based Internet of Things systems: A survey. IEEE Access, 7, 97887–97908.

    Article  Google Scholar 

  7. Ahmad, W. S. H. M. W., et al. (2020). 5G technology: Towards dynamic spectrum sharing using cognitive radio networks. IEEE Access, 8, 14460–14488.

    Article  Google Scholar 

  8. Rawat, P., Singh, K. D., & Bonnin, J. M. (2016). Cognitive radio for M2M and Internet of Things: A survey. Computer Communications, 94(15), 1–29.

    Article  Google Scholar 

  9. Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive radio based Internet of Things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wireless Communications, 24(3), 17–25.

    Article  Google Scholar 

  10. Aijaz, A., & Aghvami, A.-H. (2015). PRMA-based cognitive machine-to-machine communications in smart grid networks. IEEE Transactions on Vehicular Technology, 64(8), 3608–3623.

    Article  Google Scholar 

  11. Aijaz, A., & Aghvami, A.-H. (2015). Cognitive machine-to-machine communications for Internet-of-Things: A protocol stack perspective. IEEE Internet of Things Journal, 2(2), 103–112.

    Article  Google Scholar 

  12. Singh, R. P., Sangwan, A., & Godara, K. (2019). Modified-PRMA MAC protocol for cognitive radio networks. Wireless Personal Communications, 107, 869–885.

    Article  Google Scholar 

  13. Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2016). Wireless charging technologies: Fundamentals, standards, and network applications. IEEE Communications Surveys and Tutorials, 18(2), 1413–1452.

    Article  Google Scholar 

  14. Ku, M.-L., Li, W., Chen, Y., & Liu, K. J. R. (2016). Advances in energy harvesting communications: Past, present, and future challenges. IEEE Communications Surveys and Tutorials, 18(2), 1384–1412.

    Article  Google Scholar 

  15. Soyata, T., Copeland, L., & Heinzelman, W. (2016). RF energy harvesting for embedded systems: A survey of tradeoffs and methodology. IEEE Circuits and Systems Magazine, 16(1), 22–57.

    Article  Google Scholar 

  16. Ren, J., et al. (2018). RF energy harvesting and transfer in cognitive radio sensor networks: Opportunities and challenges. IEEE Communications Magazine, 56(1), 104–110.

    Article  Google Scholar 

  17. Mohjazi, L., Dianati, M., Karagiannidis, G. K., Muhaidat, S., & Al-Qutayri, M. (2015). RF-powered cognitive radio networks: Technical challenges and limitations. IEEE Communications Magazine, 53(4), 94–100.

    Article  Google Scholar 

  18. Liu, X., & Ansari, N. (2019). Toward green IoT: Energy solutions and key challenges. IEEE Communications Magazine, 57(3), 104–110.

    Article  Google Scholar 

  19. Liu, X., & Ansari, N. (2019). Profit-driven user association and smart grid energy transfer in green cellular networks. IEEE Transactions on Vehicular Technology, 68(10), 10111–10120.

    Article  Google Scholar 

  20. Liu, B., Wang, J., Ma, S., Zhou, F., Ma, Y., & Lu, G. (2019). Energy efficient cooperation in mobile edge computing-enabled cognitive radio networks. IEEE Access, 7, 45382–45394.

    Article  Google Scholar 

  21. Liu, B., Li, W., Ma, Y., Wang, J., & Lu, G. (2019). Wireless powered cognitive-based mobile edge computing with imperfect spectrum sensing. IEEE Access, 7, 80431–80442.

    Article  Google Scholar 

  22. Zhai, C., Li, Y., Li, C., & Liu, J. (2020). Cognitive relaying with wireless energy harvesting and accumulation. IEEE Systems Journal (Early Access), 1–12.

  23. Tayel, A. F., Rabia, S. I., El-Malek, A. H. A., & Abdelrazek, A. M. (2020). An optimal policy for hybrid channel access in cognitive radio networks with energy harvesting. IEEE Transactions on Vehicular Technology, 69(10), 11253–11265.

    Article  Google Scholar 

  24. Xu, D., & Li, Q. (2019). Resource allocation for secure communications in cooperative cognitive wireless powered communication networks. IEEE Systems Journal, 13(3), 2431–2442.

    Article  Google Scholar 

  25. Ding, H., et al. (2017). Cognitive capacity harvesting networks: Architectural evolution towards future cognitive radio networks. IEEE Communications Surveys and Tutorials, 19(3), 1902–1923.

    Article  Google Scholar 

  26. Pejoski, S., & Hadzi-Velkov, Z. (2020). Slotted ALOHA wireless networks with RF energy harvesting in Nakagami-m fading. Ad-Hoc Networks, 107, 1–10.

    Article  Google Scholar 

  27. Iqbal, M. S., Sadi, Y., & Coleri, S. (2020). Throughput maximization for full duplex wireless powered communication networks. In IEEE international conference on communications (ICC), Dublin, Ireland (pp. 7–11).

  28. Perera, T. D. P., Jayakody, D. N. K., Sharma, S. K., Chatzinotas, S., & Li, J. (2018). Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Communications Surveys & Tutorials, 20(1), 264–302.

    Article  Google Scholar 

  29. Varshney, L. (2008). Transporting information and energy simultaneously. In Proceedings of the IEEE international symposium on information theory (pp. 1612–1616).

  30. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61, 4754–4767.

    Article  Google Scholar 

  31. Boshkovska, E., Ng, D., Zlatanov, N., & Schober, R. (2015). Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Communications Letters, 19, 2082–2085.

    Article  Google Scholar 

  32. Xu, J., Liu, L., & Zhang, R. (2014). Multiuser MISO beamforming for simultaneous wireless information and power transfer. IEEE Transactions on Signal Processing, 62, 4798–4810.

    Article  Google Scholar 

  33. Zhang, Z., Long, K., Vasilakos, A. V., & Hanzo, L. (2016). Full-duplex wireless communications: Challenges, solutions, and future research directions. Proceedings of IEEE, 104(7), 1369–1409.

    Article  Google Scholar 

  34. Sharma, S. K., et al. (2018). Dynamic spectrum sharing in 5G wireless networks with full-duplex technology: Recent advances and research challenges. IEEE Communications Surveys and Tutorials, 20(1), 674–707.

    Article  Google Scholar 

  35. Amjad, M., Akhtar, F., Rehmani, M. H., Reisslein, M., & Umer, T. (2017). Full-duplex communication in cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 19(4), 2158–2191.

    Article  Google Scholar 

  36. Kolodziej, K. E., Perry, B. T., & Herd, J. S. (2019). In-band full-duplex technology: Techniques and systems survey. IEEE Transactions on Microwave Theory and Techniques, 67(7), 3025–3041.

  37. Lien, S.-Y., Chen, K.-C., & Lin, Y. (2011). Toward ubiquitous massive accesses in 3GPP machine-to-machine communications. IEEE Communications Magazine, 49(4), 66–74.

    Article  Google Scholar 

  38. Obaidat, M. S., Nicopolitidis, P., & Zarai, F. (2015). Modeling and simulation of computer networks and systems: Methodologies and applications. Burlington: Morgan Kaufmann.

    Google Scholar 

  39. Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, A. (2014). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys and Tutorials, 17(2), 757–789.

    Article  Google Scholar 

  40. Chen, X., et al. (2019). Analysis and design of an ultra-low-power Bluetooth low-energy transmitter with ring oscillator-based ADPLL and 4X frequency edge combiner. IEEE Journal of Solid-State Circuits, 54(5), 1339–1350.

    Article  Google Scholar 

  41. Ejaz, W., Naeem, M., Basharat, M., Anpalagan, A., & Kandeepan, S. (2016). Efficient wireless power transfer in software-defined wireless sensor networks. IEEE Sensors Journal, 16(20), 7409–7420.

    Article  Google Scholar 

  42. Naderi, M. Y., Nintanavongsa, P., & Chowdhury, K. R. (2014). RF-MAC: A medium access control protocol for re-chargeable sensor networks powered by wireless energy harvesting. IEEE Transactions on Wireless Communications, 13(7), 3926–3937.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Show-Shiow Tzeng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzeng, SS., Lin, YJ. Wireless energy transfer policies for cognitive radio based MAC in energy-constrained IoT networks. Telecommun Syst 77, 435–449 (2021). https://doi.org/10.1007/s11235-021-00771-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00771-4

Keywords