Skip to main content
Log in

Optimal packet length for wireless communications using reconfigurable intelligent surfaces

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Reconfigurable intelligent surfaces (RIS) allow significant throughput enhancement as all reflections have the same phase at the receiver. In this paper, we suggest to optimize packet length for wireless communications using RIS. Two techniques are suggested in order to maximize average or instantaneous throughput. Average throughput maximization requires only the average signal to noise ratio to determine the optimal packet length. The Gradient algorithm is used to maximize the average throughput. Instantaneous throughput maximization requires the instantaneous SNR in order to adapt packet length to channel conditions. We derive in closed form the expression of optimal packet length, maximizing the instantaneous throughput. Our results are valid for any number of reflecting meta-surfaces N of the RIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Basar, E., Di Renzo, M., De Rosny, J., Debbah, M., Alouini, M.-S., & Zhang, R. (2019). Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7, 116753–116773.

    Article  Google Scholar 

  2. Zhang, H., Di, B., Song, L., & Han, Z. (2020). Reconfigurable intelligent surfaces assisted communications with limited phase shifts: How many phase shifts are enough? IEEE Transactions on Vehicular Technology, 69(4), 4498–4502.

    Article  Google Scholar 

  3. Di Renzo, M. 6G Wireless: Wireless networks empowered by reconfigurable intelligent surfaces. In 2019 25th Asia-Pacific conference on communications (APCC).

  4. Basar, E. (2020). Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G. IEEE Transactions on Communications., 68, 3187–3196.

    Article  Google Scholar 

  5. Wu, Q., & Zhang, R. (2020). Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Communications Magazine, 58(1), 106–112.

    Article  Google Scholar 

  6. Huang, C., Zappone, A., Alexandropoulos, G. C., Debbah, M., & Yuen, C. (2019). Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Transactions on Wireless Communications, 18(8), 4157–4170.

    Article  Google Scholar 

  7. Alexandropoulos, G. C., & Vlachos, E. (2020). A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation. In ICASSP 2020—2020 IEEE international conference on acoustics, speech and signal processing (ICASSP).

  8. Guo, H., Liang, Y.-C., Chen, J., & Larsson, E. G. (2020). Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Transactions on Wireless Communications, 19, 3064–3076.

    Article  Google Scholar 

  9. Thirumavalavan, V. C., & Jayaraman, T. S. (2020). BER analysis of reconfigurable intelligent surface assisted downlink power domain NOMA system. In 2020 International conference on communication systems and networks (COMSNETS).

  10. Pradhan, C., Li, A., Song, L., Vucetic, B., & Li, Y. (2020). Hybrid precoding design for reconfigurable intelligent surface aided mmWave communication systems. IEEE Wireless Communications Letters, 9, 1041–1045.

    Article  Google Scholar 

  11. Ying, K., Gao, Z., Lyu, S., Wu, Y., Wang, H., & Alouini, M.-S. (2020). GMD-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive MIMO. IEEE Access, 8, 19530–19539.

    Article  Google Scholar 

  12. Yang, L., Guo, W., & Ansari, I. S. (2020). Mixed dual-hop FSO-RF communication systems through reconfigurable intelligent surface. IEEE Communications Letters, 24, 1558–1562.

    Article  Google Scholar 

  13. Di, B., Zhang, H., Li, L., Song, L., Li, Y., & Han, Z. (2020). Practical hybrid beamforming with finite-resolution phase shifters for reconfigurable intelligent surface based multi-user communications. IEEE Transactions on Vehicular Technology, 69(4), 4565–4570.

    Article  Google Scholar 

  14. Nadeem, Q.-U.-A., Kammoun, A., Chaaban, A., Debbah, M., & Alouini, M.-S. (2020). Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems. IEEE Transactions on Wireless Communications, 19, 7748–7764.

    Article  Google Scholar 

  15. Zhao, W., Wang, G., Atapattu, S., Tsiftsis, T. A., & Tellambura, C. (2020). Is backscatter link stronger than direct link in reconfigurable intelligent surface-assisted system? IEEE Communications Letters, 24, 1342–1346.

    Article  Google Scholar 

  16. Li, S., Duo, B., Yuan, X., Liang, Y.-C., & Di Renzo, M. (2020). Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming. IEEE Wireless Communications Letters, 9, 716–720.

    Article  Google Scholar 

  17. Hua, S., & Shi, Y. (2019). Reconfigurable intelligent surface for green edge inference in machine learning. In 2019 IEEE Globecom workshops (GC Wkshps).

  18. Huang, C., Alexandropoulos, G. C., Yuen, C., & Debbah, M. (2019). Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces. In 2019 IEEE 20th international workshop on signal processing advances in wireless communications (SPAWC).

  19. Dai, L., Wang, B., Wang, M., Yang, X., Tan, J., Bi, S., et al. (2020). Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results. IEEE Access, 8, 45913–45923.

  20. Zhang, Y., Di, B., Zhang, H., Lin, J., Li, Y., & Song, L. (2020). Reconfigurable intelligent surface aided cell-free MIMO communications. IEEE Wireless Communications Letters,. https://doi.org/10.1109/LWC.2020.3043132.

    Article  Google Scholar 

  21. Khaleel, A., & Basar, E. (2020). Reconfigurable intelligent surface-empowered MIMO systems. IEEE Systems Journal,. https://doi.org/10.1109/JSYST.2020.3011987.

  22. Qian, X., Di Renzo, M., Liu, J., Kammoun, A., & Alouini, M.-S. (2020). Beamforming through reconfigurable intelligent surfaces in single-user MIMO systems: SNR distribution and scaling laws in the presence of channel fading and phase noise. IEEE Wireless Communications Letters, 10, 77–81.

    Article  Google Scholar 

  23. Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Trans. Wireless Communications, 10(5), 1373–1377.

    Article  Google Scholar 

  24. Proakis, J. (2007). Digital communications (5th ed.). New York: Mac Graw-Hill.

    Google Scholar 

  25. Alnwaimi, G., & Boujemaa, H. (2018). Adaptive packet length and MCS using average and instantaneous SNR. IEEE Transactions on Vehicular Technology, 67(11), 10519–10527.

    Article  Google Scholar 

  26. Bubeck, S. (2015). Convex Optimization: Algorithms and Complexity. now publishers Inc.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan Alnwaimi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Second order derivative of throughput with respect to packet length

Appendix A: Second order derivative of throughput with respect to packet length

When RIS is used as a reflector, the second order derivative of throughput with respect to packet length is equal to

$$\begin{aligned} \frac{\partial ^2 ATHR_R^{low}(L)}{\partial L^2}= & {} \frac{-2n_dlog_2(K)}{(L+n_d)^3(1+\alpha )}[1-P_{\Gamma _R}(w_0)]\nonumber \\&+\frac{(L-2n_d)log_2(K)k_1}{(1+\alpha )(L+n_d)^3}p_{\Gamma _R}(w_0)\nonumber \\&-\frac{log_2(K)k_1^2L}{(1+\alpha )(L+n_d)^3}p'_{\Gamma _R}(w_0) \end{aligned}$$
(43)

where \(p'_{\Gamma _R}(x)\) is the derivative of PDF of SNR written as

$$\begin{aligned} p'_{\Gamma _R}(x)\simeq & {} -0.5\sqrt{\frac{N_0}{8\pi E_s\lambda _1\lambda _2\sigma _A^2}}e^{-\frac{\left[ \sqrt{\frac{N_0x}{E_s\lambda _1\lambda _2}} +m_A\right] ^2}{2\sigma _A^2}}\nonumber \\&\left( x^{-1.5} +\frac{N_0}{4E_s\lambda _1\lambda _2\sigma _A^4\sqrt{x}} +\frac{m_A\sqrt{N_0}}{4\sigma _A^4x\sqrt{E_s\lambda _1\lambda _2}}\right) \nonumber \\&-0.5\sqrt{\frac{N_0}{8\pi E_s\lambda _1\lambda _2\sigma _A^2}}e^{-\frac{\left[ \sqrt{\frac{N_0x}{E_s\lambda _1\lambda _2}}-m_A\right] ^2}{2\sigma _A^2}}\nonumber \\&\left( x^{-1.5}+\frac{N_0}{4E_s\lambda _1\lambda _2\sigma _A^4\sqrt{x}}-\frac{m_A\sqrt{N_0}}{4\sigma _A^4x\sqrt{E_s\lambda _1\lambda _2}}\right) \nonumber \\ \end{aligned}$$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnwaimi, G., Boujemaa, H. Optimal packet length for wireless communications using reconfigurable intelligent surfaces. Telecommun Syst 77, 683–696 (2021). https://doi.org/10.1007/s11235-021-00783-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00783-0

Keywords

Navigation