Skip to main content
Log in

A survey on QoS routing protocols in Vehicular Ad Hoc Network (VANET)

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Vehicular Ad Hoc Network (VANET) is an emerging new technology and a promising approach for Intelligent Transportation Systems (ITS) domain. Many researchers focused on the creation of reliable, scalable and efficient routing protocols for VANET and improve their Quality of Service (QoS). Communication among vehicular nodes which enable drivers to take appropriate decision needs a high reliability, therefore the design of a routing protocol that ensures a certain level of QoS, represents one of the most important challenges of the vehicular networks, because VANET are characterized by specific features, such as restricted mobility, high node speed and a very dynamic topology. keeping in view of the above, this paper provides a detailed description of various existing QoS routing protocols in literature with an aim to classify them. Based on the optimization methods used to improve routing protocols in VANET, we have surveyed and classified the routing protocols into two classes, QoS routing protocols not based on meta-heuristics and QoS routing protocols based on meta-heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A-AODV:

Ant Colony Optimization-AODV

ABC:

Artificial Bee Colony

ACO:

Ant Colony Optimization

ACO-EG:

Ant Colony Optimization Routing Algorithm Based on Evolving Graph

ADSR:

Ant Colony Based Dynamic Source Routing For VANET

AODV:

AD-hoc On-Demand Distance Vector

AQRV:

Adaptive QoS based Routing for Vehicle network

ARDt:

Average Routing Discovery time

ARRr:

Average Routing Replay ratio

B-ants:

Backward ants

BSC-GA:

Genetic Algorithm-Based Sparse Coverage Over Urban VANETs

BSC:

Budgeted Sparse Coverage

CALAR-DD:

Cache Agent based Location Aided Routing using Distance and Direction

CB-QoS-VANET:

Multiconstrained QoS-Compliant Routing Scheme for Highway-Based Vehicular Networks

CJBR:

Connected Junction-Based routing Protocol

COMES:

COoperative service-based MEssage Sharing

CP:

Connectivity Probability

DE:

Differential Evolution

DFS:

Depth First Search

DSRC:

Dedicated Short Range Communication

DSR:

Dynamic Source Routing

DTN:

Delay Tolerant Network

DTRP:

QoS Support in Delay Tolerant Vehicular AdHoc Networks

E2ED:

End-to-End Delay

EDD:

Expected Disconnection Degree

EG:

Evolving Graph

EG-RAODV:

Evolving Graph-Based Reliable Routing Scheme for VANETs

EIAC-ABCMR:

Enhanced and Integrated Ant Colony-Artificial Bee Colony oriented Multicast Routing

Fants:

Forward ants

G-NET:

Genetic Network Protocol

GA:

Genetic Algorithm

GABR:

Genetic Algorithm Based QoS Perception

Geo-PSO:

Geocast routing based on Particl Swarm optimization

GHR:

Generic Geographical Heuristic Routing protocol

GPS:

Geographic Position System

HC:

Hop Cont

I-OLSR:

Intelligent-OLSR

IBR:

Intersection Based Routing

ICAIR:

Improved Connectivity Aware Intersection based Routing protocol

idle time:

Percentage idle time

IGAROT:

Improved Genetic Algorithm-based Route Optimization Technique

ITS:

Intelligent Transportation Systems

JTAEG:

Journeys Traversal Algorithm on Evolving Graph

LF:

Link failure

LMQ:

Local QoS Models

M-OLSR:

Modified Optimized Link State Routing Protocol

MABC:

Micro-Artificial Bee Colony based multicast routing in vehicular ad hoc network

MAC:

Media Access Control

MANET:

Mobil Ad Hoc Network

MAS:

Multi Agents System

M-DVRP:

Multiobjective Dynamic Vehicle Routing Problem

MPLS:

Multi-Protocol Label Switching

MPR:

Multi-Point Relay

MQBV:

Multicast QoS swarm Bee routing for Vehicular ad hoc networks

MRJ:

Most Reliable Journey

MURU:

Multi Hop Routing Protocol for Urban Vehicular Ad Hoc Networks

NHV:

Next Hop Vehicle

NL:

Network Load

NOL:

Normalized Overhead Load

NRL:

Normalized Routing Load

NSCPs:

Number of Sent Control Packets

OFAODV:

Optimized Fuzzy AODV

OLSR-SA:

Optimization Techniques of Optimized Link State Routing Protocol in VANETs

P-GEDIR:

Peripheral node based GEographic DIstance Routing

PDR:

Packet Delivery Ratio

PLoss:

Packet Loss

PSO-C-MADSDV:

Destination-Sequenced DistanceVector Routing protocol(DSDV) based on the Particle Swarm Optimization (PSO) and the Multi-Agent System (MAS)

PSO-DREAM+SIFT:

Particle Swarm Optimization based Routing Protocol for VANET

PSO:

Particle Swarm Optimization

PSOR:

Particle Swarm Optimization based Routing Method for Vehicular Ad hoc Network

QoS:

Quality of Service

QoS-ACOMpVS:

QoS-aware multi-path video streaming for ur-ban VANETs using ACO algorithm

QoS BeeVANET:

QoS Swarm Bee Routing Protocol for VANET

RALAR:

Genetic Optimized Location Aided Routing Protocol for VANET Based on Rectangular Estimation of Position

RBF:

Radial Basis Function

RBN:

Roadside Backbone Network

RPVSANN:

Routing Protocol for Vehicular ad hoc networks using Simulated Annealing algorithm and Neural Networks

RREQ:

Route Request

RReqr:

Routing Request ratio

SA:

Simulated Annealing

RSU:

Road Side Unit

SAMQ:

Situation-Aware QoS Routing Algorithm for Vehicular ad hoc networks

SAw:

Situational Awareness

SMT:

Steiner Minimum Tree

TCP:

Transmission Control Protocol

TLRC:

Traffic-light-aware Routing Protocol based on Street Connectivity for urban vehicular ad hoc networks

TS:

Tabu Search

TS-PSO:

Time Seed Based Solution Using Particle Swarm Optimization

V2I:

Vehicle to Infrastructure communication

V2V:

Vehicle to Vehicle communication

VANET:

Vehicular Ad Hoc Network

VoEG:

VANET-oriented Evolving Graph

References

  1. Yousefi, S., Mousavi, M. S., & Fathy, M. (2006). Vehicular ad hoc networks (VANETs): Challenges and perspectives. In 6th international conference on ITS telecommunications (pp. 761–766).

  2. Hartenstein, H., & Laberteaux, K. (2010). VANET: Vehicular applications and inter-networking technologies. Hoboken: Wiley Online Library.

    Book  Google Scholar 

  3. Wang, X. (2011). Mobile Ad-Hoc Networks: Protocol Design. London: IntechOpen.

    Book  Google Scholar 

  4. Moustafa, H., & Zhang, Y. (2009). Vehicular networks: Techniques, standards, and applications. Boca Raton: Auerbach Publications.

    Book  Google Scholar 

  5. US Federal Communications Commission et al. (2003). Standard specification for telecommunications and information exchange between roadside and vehicle systems-5 GHz band dedicated short range communications (DSRC) medium access control (MAC) and physical layer (PHY) specifications. Washington, DC (September 2003).

  6. Jiang, D., & Delgrossi, L. (2008). IEEE 802.11p: Towards an international standard for wireless access in vehicular environments. In VTC Spring 2008-IEEE vehicular technology conference (pp. 2036–2040).

  7. Srivastava, A., Prakash, A., & Tripathi, R. (2020). Location based routing protocols in VANET: Issues and existing solutions. Vehicular Communications, 23(1), 1–30.

    Google Scholar 

  8. Tanuja, K., Sushma, T. M., Bharathi, M., & Arun, K. H. (2015). A survey on VANET technologies. International Journal of Computer Applications, 121(18), 1–9.

    Article  Google Scholar 

  9. Cunha, F., Villas, L., Boukerche, A., Maia, G., Viana, A., Mini, R. A. F., et al. (2016). Data communication in VANETs: Protocols, applications and challenges. Ad Hoc Networks, 44, 90–103.

    Article  Google Scholar 

  10. Singh, P. K., Nandi, S. K., & Nandi, S. (2019). A tutorial survey on vehicular communication state of the art, and future research directions. Vehicular Communications, 18, 1–39.

    Article  Google Scholar 

  11. Toor, Y., Muhlethaler, P., Laouiti, A., & De La Fortelle, A. (2008). Vehicle ad hoc networks: Applications and related technical issues. IEEE Communications Surveys & Tutorials, 10(3), 74–88.

    Article  Google Scholar 

  12. Schoch, E., Kargl, F., Weber, M., & Leinmuller, T. (2008). Communication patterns in VANETs. IEEE Communications Magazine, 46(11), 119–125.

    Article  Google Scholar 

  13. Lugayizi, F. L., Esiefarienrhe, B. M., & Warren, A. (2016). Comparative evaluation of qos routing in VANET. In 2016 international conference on advances in computing and communication engineering (ICACCE) (pp. 183–188).

  14. Rashid, S. A., Hamdi, M. M., & Alani, S., et al. (2020). An overview on quality of service and data dissemination in VANETs. In 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (pp. 1–5). IEEE.

  15. Kamini, K., & Kumar, R. (2010). VANET parameters and applications: A review. Global Journal of Computer Science and Technology, 10(7), 72–77.

    Google Scholar 

  16. Chang, C. Y., Yen, H. C., & Deng, D. J. (2015). V2V QoS guaranteed channel access in IEEE 802.11 p VANETs. IEEE Transactions on Dependable and Secure Computing, 13(1), 5–17.

    Article  Google Scholar 

  17. Olariu, S., & Weigle, M. C. (2009). Vehicular networks: From theory to practice. Boca Raton: Chapman and Hall/CRC.

    Book  Google Scholar 

  18. Ning, L., Cheng, N., Zhang, N., Shen, X., & Mark, J. W. (2014). Connected vehicles: Solutions and challenges. IEEE Internet of Things Journal, 1(4), 289–299.

    Article  Google Scholar 

  19. Hemalatha, P., & Gnanambigai, J. (2015). A survey on optimization techniques in wireless sensor networks. International Journal of Advanced Research in Computer Engineering & Technology (JARCET), 4(12), 4304–4309.

    Google Scholar 

  20. Eiza, M. H., Owens, T., Ni, Q., & Shi, Q. (2015). Situation-aware QoS routing algorithm for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 64(12), 5520–5535.

    Article  Google Scholar 

  21. Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J. (2009). A survey on metaheuristics for stochastic combinatorial optimization. Natural Computing, 8(2), 239–287.

    Article  Google Scholar 

  22. Tzanetos, A., & Dounias, G. (2021). Nature inspired optimization algorithms or simply variations of metaheuristics? Artificial Intelligence Review, 54, 1841–1862.

    Article  Google Scholar 

  23. Elshaer, R., & Awad, H. (2020). A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants. Computers & Industrial Engineering, 140, 1–19.

    Article  Google Scholar 

  24. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar, A. (2019). A survey on new generation metaheuristic algorithms. Computers & Industrial Engineering, 137, 1–24.

    Article  Google Scholar 

  25. Abdel-Basset, M., Abdel-Fatah, L., & Sangaiah, A. K. (2018). Metaheuristic algorithms: A comprehensive review. In A. K. Sangaiah, M. Sheng, & Z. Zhang (Eds.), Computational intelligence for multimedia big data on the cloud with engineering applications (pp. 185–231). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  26. Li, W., Ding, Y., Yang, Y., Sherratt, R. S., Park, J. H., & Wang, J. (2020). Parameterized algorithms of fundamental NP-hard problems: A survey. Human-Centric Computing and Information Sciences, 10(1), 1–24.

    Article  Google Scholar 

  27. Dawood Al-Ani, A., & Seitz, J. (2015). QoS-aware routing in multi-rate ad hoc networks based on ant colony optimization. Network Protocols & Algorithms, 7(4), 1–25.

    Article  Google Scholar 

  28. Xia, F. (2008). QoS challenges and opportunities in wireless sensor/actuator networks. Sensors, 8(2), 1099–1110.

    Article  Google Scholar 

  29. Qian, Y., & Moayeri, N. (2008). Design of secure and application-oriented VANETs. In VTC spring (pp. 2794–2799).

  30. Perkins, D. D., & Hughes, H. D. (2002). A survey on quality-of-service support for mobile ad hoc networks. Wireless Communications and Mobile Computing, 2(5), 503–513.

    Article  Google Scholar 

  31. Upadhyaya, S., & Devi, G. (2014). Characteristic evaluation of distributed QoS routing. International Journal of Computer Science and Mobile Computing, 3(3), 692–706.

    Google Scholar 

  32. Paul, P., & Raghavan, S. V. (2002). Survey of multicast routing algorithms and protocols. Proceedings of the International Conference on Computer Communication, 15, 902–927.

    Google Scholar 

  33. Mane, U., & Kulkarni, S. A. (2013). QoS realization for routing protocol on VANETs using combinatorial optimization. In 2013 fourth international conference on computing, communications and networking technologies (ICCCNT) (pp. 1–5).

  34. Asif, M., Khan, S., Ahmad, R., Sohail, M., & Singh, D. (2017). Quality of service of routing protocols in wireless sensor networks: A review. IEEE Access, 5, 1846–1871.

    Article  Google Scholar 

  35. Chen, S., & Nahrstedt, K. (1999). Distributed quality-of-service routing in ad hoc networks. IEEE Journal on Selected Areas in Communications, 17(8), 1488–1505.

    Article  Google Scholar 

  36. Zhu, C., & Corson, M. S. (2002). QoS routing for mobile ad hoc networks. In Proceedings. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies (Vol. 2, pp. 958–967).

  37. Tabar, S., & Azadmanesh, A. (2017). Quality of service in vehicular ad hoc networks. In IAENG transactions on engineering sciences: Special issue for the International Association of Engineers Conferences 2016 (Vol. 2). World Scientific.

  38. Dua, A., Kumar, N., & Bawa, S. (2014). A systematic review on routing protocols for vehicular ad hoc networks. Vehicular Communications, 1(1), 33–52.

    Article  Google Scholar 

  39. Bitam, S., Mellouk, A., & Zeadally, S. (2014). Bio-inspired routing algorithms survey for vehicular ad hoc networks. IEEE Communications Surveys & Tutorials, 17(2), 843–867.

    Article  Google Scholar 

  40. Kaur, S., Aseri, T. C., & Rani, S. (2017). Qos aware routing in vehicular ad hoc networks: A survey. International Journal of Computer & Mathematical Sciences, 6(4), 1–6.

    Google Scholar 

  41. Zeeshan, S., Zafar, Q. A. B., & Haseeb, M. (2018). Qos in vehicular ad hoc networks—A survey. Journal of Information Communication Technologies and Robotic Applications, 9(1), 48–58.

    Google Scholar 

  42. Yuying, W., & Zheng, J. (2020). Modeling and analysis of the downlink local delay in MEC-based VANETs. IEEE Transactions on Vehicular Technology, 69(6), 6619–6630.

    Article  Google Scholar 

  43. Gallager, R. (1977). A minimum delay routing algorithm using distributed computation. IEEE Transactions on Communications, 25(1), 73–85.

    Article  Google Scholar 

  44. Shu, L., Zhang, Y., Yang, L. T, Wang, Y., & Hauswirth, M. (2008). Geographic routing in wireless multimedia sensor networks. In 2008 second international conference on future generation communication and networking (Vol. 1, pp. 68–73). IEEE.

  45. Hashem Eiza, M., & Ni, Q. (2013). An evolving graph-based reliable routing scheme for VANETs. IEEE Transactions on Vehicular Technology, 62(4), 1493–1504.

    Article  Google Scholar 

  46. Guo, S., Yang, O., & Shu, Y. (2005). Improving source routing reliability in mobile ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 16(4), 362–373.

    Article  Google Scholar 

  47. Guérin, R., & Orda, A. (2002). Computing shortest paths for any number of hops. IEEE/ACM Transactions on Networking, 10(5), 613–620.

    Article  Google Scholar 

  48. Quyoom, A., Mir, A. A., & Sarwar, A. (2020). Security attacks and challenges of VANETs: A literature survey. Journal of Multimedia Information System, 7(1), 45–54.

    Article  Google Scholar 

  49. Eiza, M. H., Owens, T., & Ni, Q. (2015). Secure and robust multi-constrained QoS aware routing algorithm for VANETs. IEEE Transactions on Dependable and Secure Computing, 13(1), 32–45.

    Article  Google Scholar 

  50. Jung, S., Hundewale, N., & Zelikovsky, A. (2005). Energy efficiency of load balancing in manet routing protocols. In Sixth international conference on software engineering, artificial intelligence, networking and parallel/distributed computing and first ACIS international workshop on self-assembling wireless network (pp. 476–483). IEEE.

  51. Martirosyan, A., Boukerche, A., & Pazzi, R. W. N. (2008). Energy-aware and quality of service-based routing in wireless sensor networks and vehicular ad hoc networks. Annals of Telecommunications-annales des Télécommunications, 63(11–12), 669–681.

    Article  Google Scholar 

  52. Shringar Raw, R., & Das, S. (2013). Performance analysis of P-GEDIR protocol for vehicular ad hoc network in urban traffic environments. Wireless Personal Communications, 68(1), 65–78.

    Article  Google Scholar 

  53. Toutouh, J., García-Nieto, J., & Alba, E. (2012). Intelligent OLSR routing protocol optimization for VANETs. IEEE Transactions on Vehicular Technology, 61(4), 1884–1894.

    Article  Google Scholar 

  54. Naskath, J., Paramasivan, B., & Aldabbas, H. (2020). A study on modeling vehicles mobility with MLC for enhancing vehicle-to-vehicle connectivity in VANET. Journal of Ambient Intelligence and Humanized Computing, 1–10.

  55. Feng, K.-T., Hsu, C.-H., & Tse-En, L. (2008). Velocity-assisted predictive mobility and location-aware routing protocols for mobile ad hoc networks. IEEE Transactions on Vehicular Technology, 57(1), 448–464.

    Article  Google Scholar 

  56. Zlatkovic, M., Zlatkovic, S., Sullivan, T., Bjornstad, J., & Shahandashti, S. K. F. (2019). Assessment of effects of street connectivity on traffic performance and sustainability within communities and neighborhoods through traffic simulation. Sustainable Cities and Society, 46, 1–9.

    Article  Google Scholar 

  57. Tresidder, M. (2005). Using GIS to measure connectivity: An exploration of issues. Portland State University: Field Area Paper, pp. 1–43.

  58. Joseph, V., & Chapman, B. (2009). Deploying QoS for Cisco IP and next generation networks: The definitive guide. Burlington: Morgan Kaufmann.

    Google Scholar 

  59. Khan, M. F., Felemban, E. A., Qaisar, S., & Ali, S. (2013). Performance analysis on packet delivery ratio and end-to-end delay of different network topologies in wireless sensor networks (WSNS).

  60. Prasad, R., Dovrolis, C., Murray, M., & Claffy, K. C. (2003). Bandwidth estimation: Metrics, measurement techniques, and tools. IEEE Network, 17(6), 27–35.

    Article  Google Scholar 

  61. Behera, A., & Panigrahi, A. (2015). Determining the network throughput and flow rate using GSR and AAL2R. International Journal of UbiComp, 6(3), 9–18.

    Article  Google Scholar 

  62. El Gamal, A., Mammen, J., Prabhakar, B., & Shah, D. (2006). Optimal throughput-delay scaling in wireless networks-part I: The fluid model. IEEE Transactions on Information Theory, 52(6), 2568–2592.

    Article  Google Scholar 

  63. Ayaida, M., Barhoumi, M., Fouchal, H., Ghamri-Doudane, Y., & Afilal, L. (2014). Joint routing and location-based service in VANETs. Journal of Parallel and Distributed Computing, 74(2), 2077–2087.

    Article  Google Scholar 

  64. Madsen, T. K., Fitzek, F. H. P., Prasad, R., & Schulte, G. (2005). Connectivity probability of wireless ad hoc networks: Definition, evaluation, comparison. Wireless Personal Communications, 35(1–2), 135–151.

    Article  Google Scholar 

  65. Kaiwartya, O., & Kumar, S. (2014). Geocasting in vehicular adhoc networks using particle swarm optimization. In Proceedings of the international conference on information systems and design of communication (pp. 62–66).

  66. Lakas, A., El Amine, M., Fekair, A. K., & Lagraa, N. (2019). A multiconstrained QoS-compliant routing scheme for highway-based vehicular networks. Wireless Communications and Mobile Computing, 1–18, 2019.

    Google Scholar 

  67. Wang, X., Liu, C., Wang, Y., & Huang, C. (2014). Application of ant colony optimized routing algorithm based on evolving graph model in VANETs. In 2014 international symposium on wireless personal multimedia communications (WPMC) (pp. 265–270).

  68. Urquiza-Aguiar, L., Tripp-Barba, C., & Aguilar Igartua, M. (2016). A geographical heuristic routing protocol for VANETs. Sensors Journal, 16(10), 1567–1595.

    Article  Google Scholar 

  69. Bernsen, J., & Manivannan, D. (2008). Routing protocols for vehicular ad hoc networks that ensure quality of service. In 2008 the fourth international conference on wireless and mobile communications (pp. 1–6).

  70. Bernsen, J., & Manivannan, D. (2009). Unicast routing protocols for vehicular ad hoc networks: A critical comparison and classification. Pervasive and Mobile Computing, 5(1), 1–18.

    Article  Google Scholar 

  71. Mchergui, A., Moulahi, T., Alaya, B., & Nasri, S. (2017). A survey and comparative study of QoS aware broadcasting techniques in VANET. Telecommunication Systems, 66(2), 253–281.

    Article  Google Scholar 

  72. Oche, M., Tambuwal, A. B., Chemebe, C., Noor, R. M., & Distefano, S. (2018). VANETs QoS-based routing protocols based on multi-constrained ability to support ITS infotainment services. Wireless Networks, 26(3), 1685–1715.

    Article  Google Scholar 

  73. Hotkar, D. S., & Biradar, S. R. (2019). A review on existing QoS routing protocols in VANET based on link efficiency and link stability. In Advances in communication, cloud, and big data (pp. 89–96). Springer.

  74. Tripp-Barba, C., Zaldívar-Colado, A., Urquiza-Aguiar, L., & Aguilar-Calderón, J. A. (2019). Survey on routing protocols for vehicular ad hoc networks based on multimetrics. Electronics, 8(10), 1177–1209.

    Article  Google Scholar 

  75. Senouci, O., Harous, S., & Aliouat, Z. (2020). Survey on vehicular ad hoc networks clustering algorithms: Overview, taxonomy, challenges, and open research issues. International Journal of Communication Systems, 33(11), e4402.

    Article  Google Scholar 

  76. Gawas, M. A., & Govekar, S. (2021). State-of-art and open issues of cross-layer design and QOS routing in internet of vehicles. Wireless Personal Communications, 116, 2261–2297.

    Article  Google Scholar 

  77. Burušić, A., Balen, J., & Semialjac, K. (2020). Review and analysis of bio-inspired routing protocols in VANETs. In 2020 international conference on smart systems and technologies (SST) (pp. 45–50). IEEE.

  78. Khezri, E., & Zeinali, E. (2021). A review on highway routing protocols in vehicular ad hoc networks. SN Computer Science, 2(2), 1–22.

    Article  Google Scholar 

  79. Mo, Z., Zhu, H., Makki, K., & Pissinou, N. (2006). MURU: A multi-hop routing protocol for urban vehicular ad hoc networks. In 2006 third annual international conference on mobile and ubiquitous systems: Networking & services (pp. 1–8).

  80. Fathy, M., GholamalitabarFirouzjaee, S., & Raahemifar, K. (2012). Improving QoS in VANET using MPLS. Procedia Computer Science, 10, 1018–1025.

    Article  Google Scholar 

  81. Priyanga, D., & Sundararajan, T. V. P. (2015). Improved connectivity aware geographical routing protocol in VANETs. Journal of Electrical and Electronics Engineering, 2, 1–14.

    Google Scholar 

  82. Ding, Q., Sun, B., & Zhang, X. (2016). A traffic-light-aware routing protocol based on street connectivity for urban vehicular ad hoc networks. IEEE Communications Letters, 20(8), 1635–1638.

    Article  Google Scholar 

  83. Das, B., Misra, S., & Roy, U. (2015). Coalition formation for cooperative service-based message sharing in vehicular ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 27(1), 144–156.

    Article  Google Scholar 

  84. Kadadha, M., Otrok, H., Barada, H., Al-Qutayri, M., & Al-Hammadi, Y. (2018). A Stackelberg game for street-centric QoS-OLSR protocol in urban vehicular ad hoc networks. Vehicular Communications, 13, 64–77.

    Article  Google Scholar 

  85. Zahedi, K., Zahedi, Y., & Ismail, A. S. (2019). CJBR: Connected junction-based routing protocol for city scenarios of VANETs. Telecommunication Systems, 72(4), 567–578.

    Article  Google Scholar 

  86. Gurumoorthi, E., & Ayyasamy, A. (2020). Cache agent based location aided routing using distance and direction for performance enhancement in VANET. Telecommunication Systems, 73(3), 419–432.

    Article  Google Scholar 

  87. Suganthi, B., & Ramamoorthy, P. (2020). An advanced fitness based routing protocol for improving QoS in VANET. Wireless Personal Communications, 114, 241–263.

    Article  Google Scholar 

  88. He, Y., Zhai, D., Wang, D., Tang, X., & Zhang, R. (2020). A relay selection protocol for UAV-assisted VANETs. Applied Sciences, 10(23), 1–16.

    Article  Google Scholar 

  89. Dréo, J., Pétrowski, A., Siarry, P., & Taillard, E. (2006). Metaheuristics for hard optimization: Methods and case studies. Berlin: Springer.

    Google Scholar 

  90. BoussaïD, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information sciences, 237, 82–117.

    Article  Google Scholar 

  91. Colorni, A., Dorigo, M., Maniezzo, V., et al. (1992). Distributed optimization by ant colonies. In Proceedings of the first European conference on artificial life (Vol. 142, pp. 134–142). Massachusetts: Cambridge.

  92. Dorigo, M., Maniezzo, V., Colorni, A., et al. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, man, and cybernetics, Part B: Cybernetics, 26(1), 29–41.

    Article  Google Scholar 

  93. Glover, F. W., & Kochenberger, G. A. (2006). Handbook of metaheuristics (Vol. 57). Berlin: Springer.

    Google Scholar 

  94. Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2), 146–160.

    Article  Google Scholar 

  95. Li, G., Boukhatem, L., & Jinsong, W. (2016). Adaptive quality-of-service-based routing for vehicular ad hoc networks with ant colony optimization. IEEE Transactions on Vehicular Technology, 66(4), 3249–3264.

    Article  Google Scholar 

  96. Kumar, R., & Routray, S. K. (2016). Ant colony based dynamic source routing for VANET. In 2016 2nd international conference on applied and theoretical computing and communication technology (ICATCCT) (pp. 279–282).

  97. Vafaei, M., Khademzadeh, A., & Pourmina, M. A. (2020). QoS-aware multi-path video streaming for urban VANETs using ACO algorithm. Telecommunication Systems, 75(1), 1–18.

    Article  Google Scholar 

  98. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-06, Erciyes University, Engineering Faculty, Turkey.

  99. Bitam, S., & Mellouk, A. (2011). Qos swarm bee routing protocol for vehicular ad hoc networks. In 2011 IEEE international conference on communications (ICC) (pp. 1–5).

  100. Bitam, S., Mellouk, A., & Fowler, S. (2015). MQBV: multicast quality of service swarm bee routing for vehicular ad hoc networks. Wireless Communications and Mobile Computing, 15(9), 1391–1404.

    Article  Google Scholar 

  101. Zhang, X., Zhang, X., & Cheng, G. (2017). A micro-artificial bee colony based multicast routing in vehicular ad hoc networks. Ad Hoc Networks, 58, 213–221.

    Article  Google Scholar 

  102. Hwang, F. K., & Richards, D. S. (1992). Steiner tree problems. Networks, 22(1), 55–89.

    Article  Google Scholar 

  103. Fahad, T. O., & Ali, A. A. (2018). Multiobjective optimized routing protocol for VANETs. Advances in Fuzzy Systems, 2018, 7210253.

    Article  Google Scholar 

  104. El Amine Fekair, M., Lakas, A., & Korichi, A. (2016). CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET. In 2016 international conference on selected topics in mobile & wireless networking (MoWNeT) (pp. 1–8).

  105. Kennedy, J. (2006). Swarm intelligence. In A. Y. Zomaya (Ed.), Handbook of nature-inspired and innovative computing (pp. 187–219). Berlin: Springer.

    Chapter  Google Scholar 

  106. Zukarnain, Z. A., Al-Kharasani, N. M., Subramaniam, S. K., & Hanapi, Z. M. (2014). Optimal configuration for urban VANETs routing using particle swarm optimization. In International conference on artificial intelligence and computer science (pp. 1–6).

  107. Kalambe, K. D., Deshmukh, A. R., & Dorle, S. S. (2015). Particle swarm optimization based routing protocol for vehicular ad hoc network. International Journal of Engineering Research and General Science, 3(1), 1375–1382.

    Google Scholar 

  108. Kaiwartya, O., Kumar, S., Lobiyal, D. K., Tiwari, P. K., Abdullah, A. H., & Hassan, A. N. (2015). Multiobjective dynamic vehicle routing problem and time seed based solution using particle swarm optimization. Journal of Sensors, 2015, 1–14.

    Article  Google Scholar 

  109. Harrabi, S., Jaffar, I. B., & Ghedira, K. (2016). Novel optimized routing scheme for VANETs. Procedia Computer Science, 98, 32–39.

    Article  Google Scholar 

  110. Harrabi, S., Jaffar, I. B., & Ghedira, K. (2017). Reliability and quality of service of an optimized protocol for routing in VANETs. In CTRQ 2017: The tenth international conference on communication theory, reliability, and quality of service.

  111. Mottahedi, M., Jabbehdari, S., & Adabi, S. (2013). IBCAV: Intelligent based clustering algorithm in VANET. International Journal of Computer Science Issues (IJCSI), 10(1), 538–543.

    Google Scholar 

  112. Yelure, B., & Sonavane, S. (2020). Particle swarm optimization based routing method for vehicular ad-hoc network. In 2020 international conference on communication and signal processing (ICCSP) (pp. 1573–1578). IEEE.

  113. Mirjalili, S., Dong, J. S., Sadiq, A. S., & Faris, H. (2020). Genetic algorithm: Theory, literature review, and application in image reconstruction. In S. Mirjalili, D. J. Song, & A. Lewis (Eds.), Nature-Inspired Optimizers (pp. 69–85). Berlin: Springer.

    Google Scholar 

  114. Grefenstette, J. J., et al. (1992). Genetic algorithms for changing environments. PPSN, 2, 137–144.

    Google Scholar 

  115. Buriol, L. S., Resende, M. G. C., Ribeiro, C. C., & Thorup, M. (2005). A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing. Networks: An International Journal, 46(1), 36–56.

    Article  Google Scholar 

  116. Saleet, H., Langar, R., Naik, S., Boutaba, R., Nayak, A., & Goel, N. (2010). QoS support in delay tolerant vehicular ad hoc networks. In 2010 IEEE global telecommunications conference GLOBECOM (pp. 1–6).

  117. Cheng, H., Fei, X., Boukerche, A., & Almulla, M. (2014). A genetic algorithm-based sparse coverage over urban VANETs. In 2014 IEEE international parallel & distributed processing symposium workshops (pp. 464–469).

  118. Wille, E. C. G., Del Monego, H. I., Coutinho, B. V., & Basilio, G. G. (2016). Routing protocols for VANETs: An approach based on genetic algorithms. KSII Transactions on Internet & Information Systems, 10(2), 542–558.

    Google Scholar 

  119. Zhang, G., Min, W., Duan, W., & Huang, X. (2018). Genetic algorithm based QoS perception routing protocol for VANETs. Wireless Communications and Mobile Computing, 7, 1–10.

    Google Scholar 

  120. Bello-Salau, H., Aibinu, A. M., Wang, Z., Onumanyi, A. J., Onwuka, E. N., & Dukiya, J. J. (2019). An optimized routing algorithm for vehicle ad-hoc networks. Engineering Science and Technology, an International Journal, 22(3), 754–766.

    Article  Google Scholar 

  121. Aibinu, A. M., Bello Salau, H., Rahman, N. A., Nwohu, M. N., & Akachukwu, C. M. (2016). A novel clustering based genetic algorithm for route optimization. Engineering Science and Technology, an International Journal, 19(4), 2022–2034.

    Article  Google Scholar 

  122. Muniyandi, R. C., Qamar, F., & Jasim, A. N. (2020). Genetic optimized location aided routing protocol for VANET based on rectangular estimation of position. Applied Sciences, 10(17), 1–16.

    Article  Google Scholar 

  123. Laarhoven van , P. J. M., & Aarts, E. H. L. (1987). Simulated annealing: Theory and applications. Mathematics and its applications. Reidel.

  124. Urquiza-Aguiar, L., Almeida, D., Tripp-Barba, C., & Aguilar Igartua, M. (2015). Heuristic methods in geographical routing protocols for VANETs. In Proceedings of the 12th ACM symposium on performance evaluation of wireless ad hoc, sensor, & ubiquitous networks (pp. 41–48).

  125. Bagherlou, H., & Ghaffari, A. (2018). A routing protocol for vehicular ad hoc networks using simulated annealing algorithm and neural networks. The Journal of Supercomputing, 74(6), 5520–5535.

    Article  Google Scholar 

  126. Wang, S.-S., & Lin, Y.-S. (2013). Passcar: A passive clustering aided routing protocol for vehicular ad hoc networks. Computer Communications, 36(2), 170–179.

    Article  Google Scholar 

  127. Ge, Y., Kunz, T., & Lamont, L. (2003). Quality of service routing in ad-hoc networks using OLSR. In 36th annual Hawaii international conference on system sciences (pp. 1–9).

  128. Batra, R., Sharma, K. K., & Chauhan, S. (2015). Simulation study of optimization techniques of OLSR protocol in VANETs. International Journal for Advance Research in Engineering and Technology, 3, 6–11.

    Google Scholar 

  129. Malathi, A., & Sreenath, N. (2017). Enhanced and integrated ant colony-artificial bee colony-based QoS constrained multicast routing for VANETs. International Journal of Computer Science and Information Security, 15(9), 42–53.

    Google Scholar 

  130. More, S., & Naik, U. (2021). Optimal multipath routing for video transmission in VANETs. Wireless Personal Communications, 116(1), 805–827.

    Article  Google Scholar 

  131. Shouzhi, X., Guo, P., Bo, X., & Zhou, H. (2013). QoS evaluation of VANET routing protocols. Journal of Networks, 8(1), 132–261.

    Google Scholar 

  132. Abbas, M. T., & Song, W.-C. (2017). Infrastructure-assisted hybrid road-aware routing and QoS provisioning in VANETs. In 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS) (pp. 370–373). IEEE.

  133. Noorani, N., & Amin HosseiniSeno, S. (2020). SDN-and fog computing-based switchable routing using path stability estimation for vehicular ad hoc networks. Peer-to-Peer Networking and Applications, 13, 948–964.

    Article  Google Scholar 

  134. Shah, A. F. M. S., Ilhan, H., & Tureli, U. (2018). qCB-MAC: Qos aware cluster-based MAC protocol for VANETs. In Science and Information Conference (pp. 685–695). Springer.

  135. Nadia, T., Mourad, A., & Moumen, H. (2019). A survey on vehicular ad-hoc networks routing protocols: Classification and challenges. Journal of Digital Information Management, 17(4), 227–244.

    Article  Google Scholar 

  136. Arif, M., Guojun Wang, Md, Bhuiyan, Z. A., Wang, T., & Chen, J. (2019). A survey on security attacks in VANETs: Communication, applications and challenges. Vehicular Communications, 19, 100–179.

    Article  Google Scholar 

  137. Alaya, B., Laouamer, L., & Msilini, N. (2020). Homomorphic encryption systems statement: Trends and challenges. Computer Science Review, 36, 1–14.

    Article  Google Scholar 

  138. Ali, I., Hassan, A., & Li, F. (2019). Authentication and privacy schemes for vehicular ad hoc networks (VANETs): A survey. Vehicular Communications, 16, 45–61.

    Article  Google Scholar 

  139. Mershad, K. (2020). Surfer: A secure SDN-based routing protocol for internet of vehicles. IEEE Internet of Things Journal, 8, 7407–7422.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Belamri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belamri, F., Boulfekhar, S. & Aissani, D. A survey on QoS routing protocols in Vehicular Ad Hoc Network (VANET). Telecommun Syst 78, 117–153 (2021). https://doi.org/10.1007/s11235-021-00797-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00797-8

Keywords

Navigation