Abstract
This paper investigates shortcomings that limit the performance of optical code division multiple access (OCDMA) systems including the low cardinality and data rate as well as the high power at reception. The main drawback for such systems known as multiple access interference accompanying by phase induced intensity noise is also investigated to effeciencly propose a novel two dimensional cyclic shift (2D-CS) code to be implemented in non-coherent OCDMA systems. The developed code is based on a one dimensional cyclic shift (1D-CS) code previously provided by research works processing spectral amplitude coding for optical code division multiple access (SAC-OCDMA) systems. Numerical results obtained by this study are therefore compared to previous studies employing different codes like two dimensional extended double weight (2D-EDW), two dimensional flexible cross correlation/modified double weight (2D-FCC/MDW), two dimensional perfect difference (2D-PD), two dimensional diluted perfect difference (2D-DPD), two dimensional multi service (2D-MS) and two dimensional zero cross correlation/multi diagonal (2D-ZCC/MD) codes. Accordingly, it is demonstrated that the proposed 2D-CS code outperforms all codes given previously in terms of system capacity where the small increasing percentage is about 40% compared to 2D-ZCC/MD and 2D-MS. Systems using 2D-CS code can support until 203 simultaneous users with a total code length equal to 171. System performance investigation leads to a BER and Q-Factor closely to1.0E−12 and 1.0E−27, and 6.6 dB and 10.6 dB at 20 km of single mode fiber length using white light source and Laser, respectively. Furthermore, such a code can be easily adopted by OCDMA systems for a long distance up to approximately 55 and 100 km.







source power



source power

source power




source at distance 20 km


source at distance 20 km

source at distance 20 km




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Cherifi, A., Jellali, N., Najjar, M., Aljunid, S. A., & Bouazza, B. S. (2019). Development of a novel two-dimensional-SWZCC—Code for spectral/spatial optical CDMA system. Optics and Laser Technology Journal, 109, 233–240. https://doi.org/10.1016/j.optlastec.2018.07.078
Nisar, K. S., Sarangal, H., & Thapar, S. S. (2019). Performance evaluation of newly constructed NZCC for SAC-OCDMA using direct detection technique. Photonic Network Communications, 37(1), 75–82. https://doi.org/10.1007/s11107-018-0794-4
Sharma, T., & Maddila, R. K. (2019). Performance characteristics of the spectral-amplitude-coding optical CDMA system based on one-dimensional optical codes and a multi-array laser. Ukrainian Journal of Physical Optics, 20(2), 81–90. https://doi.org/10.3116/16091833/20/2/81/2019
Alayedi, M., Cherifi, A., Hamida, A. F., Rahmani, M., Attalah, Y., & Bouazza, B. S. (2020). Design improvement to reduce noise effect in CDMA multiple access optical systems based on new (2-D) code using spectral/spatial half-matrix technique. Journal of Optical Communications. https://doi.org/10.1515/joc-2020-0069
Alayedi, M., Cherifi, A., Hamida, A. F., Rashidi, C. B. M., & Bouazza, B. S. (2020). Performance improvement of multi access OCDMA system based on a new zero cross correlation code. IOP Conference Series: Materials Science and Engineering, 767, 012042. https://doi.org/10.1088/1757-899X/767/1/012042
Cherifi, A., Bouazza, B. S., Al-ayedi, M., Aljunid, S. A., & Rashidi, C. B. M. (2018). Development and performance improvement of a new two-dimensional spectral/spatial code using the pascal triangle rule for OCDMA system. Journal of Optical Communications. https://doi.org/10.1515/joc-2018-0052
Mrabet, H., Dayoub, I., Attia, R., & Haxha, S. (2009). Performance improving of OCDMA system using 2-D optical codes with optical SIC receiver. Journal of Lightwave Technology, 27(21), 4744–4753. https://doi.org/10.1109/JLT.2009.2026293
Mrabet, H., Dayoub, I., & Attia, R. (2017). Comparative study of 2D-OCDMA-WDM system performance in 40-Gb /s PON context. IET Optoelectronics, 11(4), 141–147. https://doi.org/10.1049/iet-opt.2016.0142
Mrabet, H., Dayoub, I., Haxha, S., & Attia, R. (2019). Performance analysis of 2D-OCDMA system in long-reach passive optical network. Optics and Laser Technology, 117, 64–72.
Alayedi, M., Cherifi, A., & Hamida, A. F. (2019). Performance enhancement of SAC-OCDMA system using a new optical code. In Proceedings—2019 6th international conference on image and signal processing and their applications, ISPA 2019. https://doi.org/10.1109/ISPA48434.2019.8966912
Abd, T. H., Aljunid, S. A., Fadhil, H. A., Ahmad, R. A., & Saad, N. M. (2011). Development of a new code family based on SAC-OCDMA system with large cardinality for OCDMA network. Optical Fiber Technology, 17(4), 273–280. https://doi.org/10.1016/j.yofte.2011.04.002
Bazan, T. M., Harle, D., & Andonovic, I. (2006). Performance analysis of 2-D time-wavelength OCDMA systems with coherent light sources: Code design considerations. Journal of Lightwave Technology, 24(10), 3583–3589. https://doi.org/10.1109/JLT.2006.881479
Najjar, M., Jellali, N., Ferchichi, M., & Rezig, H. (2017). Spectral/spatial optical CDMA code based on diagonal eigenvalue unity. Optical Fiber Technology, 38(July), 61–69. https://doi.org/10.1016/j.yofte.2017.08.003
Ahmed, H. Y., Zeghid, M., Imtiaz, W. A., & Sghaier, A. (2019). Two dimensional fixed right shift (FRS) code for SAC-OCDMA systems. Optical Fiber Technology, 47, 73–87. https://doi.org/10.1016/j.yofte.2018.11.021
Lin, C., Wu, J., & Yang, C. (2005). Noncoherent spatial/spectral optical CDMA system with two-dimensional perfect difference codes. Journal of Lightwave Technology, 23(12), 3966–3980.
Jellali, N., Najjar, M., Ferchichi, M., & Janyani, V. (2019). Performance enhancement of the 3D OCDMA system by using dynamic cyclic shift and multi-diagonal codes. Photonic Network Communications, 37(1), 63–74. https://doi.org/10.1007/s11107-018-0793-5
Imtiaz, W. A., Ahmed, H. Y., Zeghid, M., Sharief, Y., & Usman, M. (2019). Design and implementation of two-dimensional enhanced multi-diagonal code for high cardinality OCDMA-PON. Arabian Journal for Science and Engineering, 44(8), 7067–7084. https://doi.org/10.1007/s13369-019-03789-8
Kadhim, R. A., Fadhil, H. A., Aljunid, S. A., & Razalli, M. S. (2014). A new two dimensional spectral/spatial multi-diagonal code for noncoherent optical code division multiple access (OCDMA) systems. Optics Communications, 329, 28–33. https://doi.org/10.1016/j.optcom.2014.04.082
Qadir, M. (2020). Enhancing system capacity for 2D spectral temporal optical code division multiple access systems. Journal of Mechanics of Continua and Mathematical Sciences, 15(1), 283–290. https://doi.org/10.26782/jmcms.2020.01.00022
Srinivas, T., Archana, K., & Sompur, V. P. (2011). Simulation and performance analysis of OCDMA systems based on 2-D W/T codes. In Proceedings—2011 annual IEEE India conference: Engineering sustainable solutions, INDICON-2011 (pp. 0–3). https://doi.org/10.1109/INDCON.2011.6139434
Yim, R. M. H., Chen, L. R., & Bajcsy, J. (2002). Design and performance of 2-D codes for wavelength-time optical CDMA. IEEE Photonics Technology Letters, 14(5), 714–716. https://doi.org/10.1109/68.998735
Nurol, M. N., Arief, A. R., Anuar, M. S., Aljunid, S. A., Din Keraf, N., & Arif, S. (2011). Performance analysis of 2-D Extended-EDW Code for optical CDMA system. In 2014 2nd international conference on electronic design, ICED 2014 (pp. 287–292). https://doi.org/10.1109/ICED.2014.7015815
Din Keraf, N., Aljunid, S. A., Anuar, M. S., Rashidi, C. B. M., & Ehkan, P. (2016). Performance of 2-D hybrid FCC-MDW code on OCDMA system with the presence of phase induced intensity noise. ARPN Journal of Engineering and Applied Sciences, 11(22), 13203–13208.
Yeh, B. C., Lin, C. H., Yang, C. L., & Wu, J. (2009). Noncoherent spectral/spatial optical CDMA system using 2-D diluted perfect difference codes. Journal of Lightwave Technology, 27(13), 2420–2432. https://doi.org/10.1109/JLT.2008.2010721
Matem, R., Aljunid, S. A., Junita, M. N., Junita, M. N., Rashidi, C. B. M., Matem, R., & Ahmed, I. S. (2019). A novel two-dimensional spectral/spatial hybrid code for optical code division multiple. Journal of Theoretical and Applied Information Technology, 97(3), 704–713.
Mostafa, S., Mohamed, A. E.-N. A., El-samie, F. E. A., & Rashed, A. N. Z. (2019). Cyclic shift code for SAC-OCDMA using fiber bragg-grating cyclic shift code for SAC-OCDMA using fiber bragg-grating (pp. 1–17). arXiv:1904.00373
Jellali, N., Najjar, M., Ferchichi, M., & Rezig, H. (2017). Optical fiber technology development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system. Optical Fiber Technology, 36, 26–32. https://doi.org/10.1016/j.yofte.2017.02.002
Cherifi, A., Yagoubi, B., Bouazza, B. S., & Dahman, A. O. (2016). New method for the construction of optical zero cross correlation code using block matrices in OCDMA-OFDM system. Journal of Telecommunication, Electronic and Computer Engineering, 8(1), 33–39.
Mrabet, H., Cherifi, A., Raddo, T., Dayoub, I., & Haxha, S. (2020). A Comparative study of asynchronous and synchronous OCDMA systems. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2020.2991678
Ghafouri-Shiraz, H., & Karbassian, M. M. (2012). Optical CDMA networks: Principles, analysis and applications. Wiley. https://doi.org/10.1002/9781119941330
Kandouci, C., & Djebbari, A. (2017). Design of new hybrid wavelength hopping/time spreading codes for optical CDMA by combining OCC and BIBD ZCC codes. Optik, 133, 73–79. https://doi.org/10.1016/j.ijleo.2017.01.006
Kandouci, C., Djebbari, A., & Taleb-Ahmed, A. (2017). A new family of 2D-wavelength-time codes for OCDMA system with direct detection. Optik, 135, 8–15. https://doi.org/10.1016/j.ijleo.2017.01.065
Jyoti, V., & Kaler, R. S. (2011). Design and implementation of 2-dimensional wavelength/time codes for OCDMA. Optik, 122(10), 851–857. https://doi.org/10.1016/j.ijleo.2010.05.025
Najjar, M., Jellali, N., & Ferchichi, M. (2017). Two-dimensional multi-service code for spectral/spatial optical CDMA system. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-017-1234-x
Jellali, N., Najjar, M., Ferchichi, M., & Rezig, H. (2017). Development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system. Optical Fiber Technology, 36, 26–32. https://doi.org/10.1016/j.yofte.2017.02.002
Yousif Ahmed, H., Zeghid, M. A., Imtiaz, W., Sharma, T., Chehri, A., & Fortier, P. (2020). Two-dimensional permutation vectors’ (PV) code for optical code division multiple access systems. Entropy, 22(5), 576. https://doi.org/10.3390/e22050576
Arief, A. R., Aljunid, S. A., Anuar, M. S., Junita, M. N., & Ahmad, R. B. (2013). Cardinality enhancement of spectral/spatial modified double weight code optical code division multi-access system by PIIN suppression. Optik, 124(19), 3786–3793. https://doi.org/10.1016/j.ijleo.2012.11.061
Azura, M. S. A., Rashidi, C. B. M., Aljunid, S. A., Endut, R., & Ali, N. (2017). Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system. EPJ Web of Conferences, 162, 01013. https://doi.org/10.1051/epjconf/201716201013
Kwong, W. C., & Yang, G.-C. (2002). Prime codes with applications to CDMA optical and wireless networks. Norwood: Artech House.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Alayedi, M., Cherifi, A., Ferhat Hamida, A. et al. A fair comparison of SAC-OCDMA system configurations based on two dimensional cyclic shift code and spectral direct detection. Telecommun Syst 79, 193–212 (2022). https://doi.org/10.1007/s11235-021-00840-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-021-00840-8