Skip to main content
Log in

A fair comparison of SAC-OCDMA system configurations based on two dimensional cyclic shift code and spectral direct detection

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper investigates shortcomings that limit the performance of optical code division multiple access (OCDMA) systems including the low cardinality and data rate as well as the high power at reception. The main drawback for such systems known as multiple access interference accompanying by phase induced intensity noise is also investigated to effeciencly propose a novel two dimensional cyclic shift (2D-CS) code to be implemented in non-coherent OCDMA systems. The developed code is based on a one dimensional cyclic shift (1D-CS) code previously provided by research works processing spectral amplitude coding for optical code division multiple access (SAC-OCDMA) systems. Numerical results obtained by this study are therefore compared to previous studies employing different codes like two dimensional extended double weight (2D-EDW), two dimensional flexible cross correlation/modified double weight (2D-FCC/MDW), two dimensional perfect difference (2D-PD), two dimensional diluted perfect difference (2D-DPD), two dimensional multi service (2D-MS) and two dimensional zero cross correlation/multi diagonal (2D-ZCC/MD) codes. Accordingly, it is demonstrated that the proposed 2D-CS code outperforms all codes given previously in terms of system capacity where the small increasing percentage is about 40% compared to 2D-ZCC/MD and 2D-MS. Systems using 2D-CS code can support until 203 simultaneous users with a total code length equal to 171. System performance investigation leads to a BER and Q-Factor closely to1.0E−12 and 1.0E−27, and 6.6 dB and 10.6 dB at 20 km of single mode fiber length using white light source and Laser, respectively. Furthermore, such a code can be easily adopted by OCDMA systems for a long distance up to approximately 55 and 100 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4.
Fig. 5
Fig. 6
Fig. 7

source power

Fig. 8
Fig. 9
Fig. 10

source power

Fig. 11

source power

Fig. 12
Fig. 13
Fig. 14
Fig. 15

source at distance 20 km

Fig. 16
Fig. 17

source at distance 20 km

Fig. 18

source at distance 20 km

Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Cherifi, A., Jellali, N., Najjar, M., Aljunid, S. A., & Bouazza, B. S. (2019). Development of a novel two-dimensional-SWZCC—Code for spectral/spatial optical CDMA system. Optics and Laser Technology Journal, 109, 233–240. https://doi.org/10.1016/j.optlastec.2018.07.078

    Article  Google Scholar 

  2. Nisar, K. S., Sarangal, H., & Thapar, S. S. (2019). Performance evaluation of newly constructed NZCC for SAC-OCDMA using direct detection technique. Photonic Network Communications, 37(1), 75–82. https://doi.org/10.1007/s11107-018-0794-4

    Article  Google Scholar 

  3. Sharma, T., & Maddila, R. K. (2019). Performance characteristics of the spectral-amplitude-coding optical CDMA system based on one-dimensional optical codes and a multi-array laser. Ukrainian Journal of Physical Optics, 20(2), 81–90. https://doi.org/10.3116/16091833/20/2/81/2019

    Article  Google Scholar 

  4. Alayedi, M., Cherifi, A., Hamida, A. F., Rahmani, M., Attalah, Y., & Bouazza, B. S. (2020). Design improvement to reduce noise effect in CDMA multiple access optical systems based on new (2-D) code using spectral/spatial half-matrix technique. Journal of Optical Communications. https://doi.org/10.1515/joc-2020-0069

    Article  Google Scholar 

  5. Alayedi, M., Cherifi, A., Hamida, A. F., Rashidi, C. B. M., & Bouazza, B. S. (2020). Performance improvement of multi access OCDMA system based on a new zero cross correlation code. IOP Conference Series: Materials Science and Engineering, 767, 012042. https://doi.org/10.1088/1757-899X/767/1/012042

    Article  Google Scholar 

  6. Cherifi, A., Bouazza, B. S., Al-ayedi, M., Aljunid, S. A., & Rashidi, C. B. M. (2018). Development and performance improvement of a new two-dimensional spectral/spatial code using the pascal triangle rule for OCDMA system. Journal of Optical Communications. https://doi.org/10.1515/joc-2018-0052

    Article  Google Scholar 

  7. Mrabet, H., Dayoub, I., Attia, R., & Haxha, S. (2009). Performance improving of OCDMA system using 2-D optical codes with optical SIC receiver. Journal of Lightwave Technology, 27(21), 4744–4753. https://doi.org/10.1109/JLT.2009.2026293

    Article  Google Scholar 

  8. Mrabet, H., Dayoub, I., & Attia, R. (2017). Comparative study of 2D-OCDMA-WDM system performance in 40-Gb /s PON context. IET Optoelectronics, 11(4), 141–147. https://doi.org/10.1049/iet-opt.2016.0142

    Article  Google Scholar 

  9. Mrabet, H., Dayoub, I., Haxha, S., & Attia, R. (2019). Performance analysis of 2D-OCDMA system in long-reach passive optical network. Optics and Laser Technology, 117, 64–72.

    Article  Google Scholar 

  10. Alayedi, M., Cherifi, A., & Hamida, A. F. (2019). Performance enhancement of SAC-OCDMA system using a new optical code. In Proceedings—2019 6th international conference on image and signal processing and their applications, ISPA 2019. https://doi.org/10.1109/ISPA48434.2019.8966912

  11. Abd, T. H., Aljunid, S. A., Fadhil, H. A., Ahmad, R. A., & Saad, N. M. (2011). Development of a new code family based on SAC-OCDMA system with large cardinality for OCDMA network. Optical Fiber Technology, 17(4), 273–280. https://doi.org/10.1016/j.yofte.2011.04.002

    Article  Google Scholar 

  12. Bazan, T. M., Harle, D., & Andonovic, I. (2006). Performance analysis of 2-D time-wavelength OCDMA systems with coherent light sources: Code design considerations. Journal of Lightwave Technology, 24(10), 3583–3589. https://doi.org/10.1109/JLT.2006.881479

    Article  Google Scholar 

  13. Najjar, M., Jellali, N., Ferchichi, M., & Rezig, H. (2017). Spectral/spatial optical CDMA code based on diagonal eigenvalue unity. Optical Fiber Technology, 38(July), 61–69. https://doi.org/10.1016/j.yofte.2017.08.003

    Article  Google Scholar 

  14. Ahmed, H. Y., Zeghid, M., Imtiaz, W. A., & Sghaier, A. (2019). Two dimensional fixed right shift (FRS) code for SAC-OCDMA systems. Optical Fiber Technology, 47, 73–87. https://doi.org/10.1016/j.yofte.2018.11.021

    Article  Google Scholar 

  15. Lin, C., Wu, J., & Yang, C. (2005). Noncoherent spatial/spectral optical CDMA system with two-dimensional perfect difference codes. Journal of Lightwave Technology, 23(12), 3966–3980.

    Article  Google Scholar 

  16. Jellali, N., Najjar, M., Ferchichi, M., & Janyani, V. (2019). Performance enhancement of the 3D OCDMA system by using dynamic cyclic shift and multi-diagonal codes. Photonic Network Communications, 37(1), 63–74. https://doi.org/10.1007/s11107-018-0793-5

    Article  Google Scholar 

  17. Imtiaz, W. A., Ahmed, H. Y., Zeghid, M., Sharief, Y., & Usman, M. (2019). Design and implementation of two-dimensional enhanced multi-diagonal code for high cardinality OCDMA-PON. Arabian Journal for Science and Engineering, 44(8), 7067–7084. https://doi.org/10.1007/s13369-019-03789-8

    Article  Google Scholar 

  18. Kadhim, R. A., Fadhil, H. A., Aljunid, S. A., & Razalli, M. S. (2014). A new two dimensional spectral/spatial multi-diagonal code for noncoherent optical code division multiple access (OCDMA) systems. Optics Communications, 329, 28–33. https://doi.org/10.1016/j.optcom.2014.04.082

    Article  Google Scholar 

  19. Qadir, M. (2020). Enhancing system capacity for 2D spectral temporal optical code division multiple access systems. Journal of Mechanics of Continua and Mathematical Sciences, 15(1), 283–290. https://doi.org/10.26782/jmcms.2020.01.00022

    Article  Google Scholar 

  20. Srinivas, T., Archana, K., & Sompur, V. P. (2011). Simulation and performance analysis of OCDMA systems based on 2-D W/T codes. In Proceedings—2011 annual IEEE India conference: Engineering sustainable solutions, INDICON-2011 (pp. 0–3). https://doi.org/10.1109/INDCON.2011.6139434

  21. Yim, R. M. H., Chen, L. R., & Bajcsy, J. (2002). Design and performance of 2-D codes for wavelength-time optical CDMA. IEEE Photonics Technology Letters, 14(5), 714–716. https://doi.org/10.1109/68.998735

    Article  Google Scholar 

  22. Nurol, M. N., Arief, A. R., Anuar, M. S., Aljunid, S. A., Din Keraf, N., & Arif, S. (2011). Performance analysis of 2-D Extended-EDW Code for optical CDMA system. In 2014 2nd international conference on electronic design, ICED 2014 (pp. 287–292). https://doi.org/10.1109/ICED.2014.7015815

  23. Din Keraf, N., Aljunid, S. A., Anuar, M. S., Rashidi, C. B. M., & Ehkan, P. (2016). Performance of 2-D hybrid FCC-MDW code on OCDMA system with the presence of phase induced intensity noise. ARPN Journal of Engineering and Applied Sciences, 11(22), 13203–13208.

    Google Scholar 

  24. Yeh, B. C., Lin, C. H., Yang, C. L., & Wu, J. (2009). Noncoherent spectral/spatial optical CDMA system using 2-D diluted perfect difference codes. Journal of Lightwave Technology, 27(13), 2420–2432. https://doi.org/10.1109/JLT.2008.2010721

    Article  Google Scholar 

  25. Matem, R., Aljunid, S. A., Junita, M. N., Junita, M. N., Rashidi, C. B. M., Matem, R., & Ahmed, I. S. (2019). A novel two-dimensional spectral/spatial hybrid code for optical code division multiple. Journal of Theoretical and Applied Information Technology, 97(3), 704–713.

    Google Scholar 

  26. Mostafa, S., Mohamed, A. E.-N. A., El-samie, F. E. A., & Rashed, A. N. Z. (2019). Cyclic shift code for SAC-OCDMA using fiber bragg-grating cyclic shift code for SAC-OCDMA using fiber bragg-grating (pp. 1–17). arXiv:1904.00373

  27. Jellali, N., Najjar, M., Ferchichi, M., & Rezig, H. (2017). Optical fiber technology development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system. Optical Fiber Technology, 36, 26–32. https://doi.org/10.1016/j.yofte.2017.02.002

    Article  Google Scholar 

  28. Cherifi, A., Yagoubi, B., Bouazza, B. S., & Dahman, A. O. (2016). New method for the construction of optical zero cross correlation code using block matrices in OCDMA-OFDM system. Journal of Telecommunication, Electronic and Computer Engineering, 8(1), 33–39.

    Google Scholar 

  29. Mrabet, H., Cherifi, A., Raddo, T., Dayoub, I., & Haxha, S. (2020). A Comparative study of asynchronous and synchronous OCDMA systems. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2020.2991678

    Article  Google Scholar 

  30. Ghafouri-Shiraz, H., & Karbassian, M. M. (2012). Optical CDMA networks: Principles, analysis and applications. Wiley. https://doi.org/10.1002/9781119941330

    Book  Google Scholar 

  31. Kandouci, C., & Djebbari, A. (2017). Design of new hybrid wavelength hopping/time spreading codes for optical CDMA by combining OCC and BIBD ZCC codes. Optik, 133, 73–79. https://doi.org/10.1016/j.ijleo.2017.01.006

    Article  Google Scholar 

  32. Kandouci, C., Djebbari, A., & Taleb-Ahmed, A. (2017). A new family of 2D-wavelength-time codes for OCDMA system with direct detection. Optik, 135, 8–15. https://doi.org/10.1016/j.ijleo.2017.01.065

    Article  Google Scholar 

  33. Jyoti, V., & Kaler, R. S. (2011). Design and implementation of 2-dimensional wavelength/time codes for OCDMA. Optik, 122(10), 851–857. https://doi.org/10.1016/j.ijleo.2010.05.025

    Article  Google Scholar 

  34. Najjar, M., Jellali, N., & Ferchichi, M. (2017). Two-dimensional multi-service code for spectral/spatial optical CDMA system. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-017-1234-x

    Article  Google Scholar 

  35. Jellali, N., Najjar, M., Ferchichi, M., & Rezig, H. (2017). Development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system. Optical Fiber Technology, 36, 26–32. https://doi.org/10.1016/j.yofte.2017.02.002

    Article  Google Scholar 

  36. Yousif Ahmed, H., Zeghid, M. A., Imtiaz, W., Sharma, T., Chehri, A., & Fortier, P. (2020). Two-dimensional permutation vectors’ (PV) code for optical code division multiple access systems. Entropy, 22(5), 576. https://doi.org/10.3390/e22050576

    Article  Google Scholar 

  37. Arief, A. R., Aljunid, S. A., Anuar, M. S., Junita, M. N., & Ahmad, R. B. (2013). Cardinality enhancement of spectral/spatial modified double weight code optical code division multi-access system by PIIN suppression. Optik, 124(19), 3786–3793. https://doi.org/10.1016/j.ijleo.2012.11.061

    Article  Google Scholar 

  38. Azura, M. S. A., Rashidi, C. B. M., Aljunid, S. A., Endut, R., & Ali, N. (2017). Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system. EPJ Web of Conferences, 162, 01013. https://doi.org/10.1051/epjconf/201716201013

    Article  Google Scholar 

  39. Kwong, W. C., & Yang, G.-C. (2002). Prime codes with applications to CDMA optical and wireless networks. Norwood: Artech House.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Cherifi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alayedi, M., Cherifi, A., Ferhat Hamida, A. et al. A fair comparison of SAC-OCDMA system configurations based on two dimensional cyclic shift code and spectral direct detection. Telecommun Syst 79, 193–212 (2022). https://doi.org/10.1007/s11235-021-00840-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00840-8

Keywords

Navigation