Skip to main content
Log in

Optimal packet length for non orthogonal multiple access

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we maximize the throughput in Non Orthogonal Multiple Access (NOMA). Two approaches are presented to maximize either the average or instantaneous throughput. We optimize packet length to maximize the average throughput at any NOMA user. We also maximize the average total throughput. The total throughput is the sum of the throughput of all users. The second approach consists to adapt packet length to maximize the instantaneous throughput at any NOMA user. The optimization is performed in the presence of multiple NOMA users for Rayleigh and Nakagami fading channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Dat availability

Data and material are not available.

References

  1. Li, Q. C., Niu, H., Papathanassiou, A. T., & Wu, G. (2014). 5G network capacity: Key elements and technologies. IEEE Vehicular Technology Magazine, 9(1), 71–78.

    Article  Google Scholar 

  2. Saito, Y., Benjebbour, A., Kishiyama, Y., and Nakamura, T. (2013) System- level performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proc. IEEE Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), Sep. , pp. 611-615.

  3. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.

    Article  Google Scholar 

  4. Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Communications Letters, 5(4), 416–419.

    Article  Google Scholar 

  5. Men, J., & Ge, J. (2015). Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Communications Letters, 19(10), 1686–1689.

    Article  Google Scholar 

  6. Niu, Y., Gao, C., Li, Y., Su, L., & Jin, D. (2016). Exploiting multi-hop relaying to overcome blockage in directional mmwave small cells. Journal of Communications and Networks, 18(3), 364–374.

    Article  Google Scholar 

  7. Kim, J. B., & Lee, I. H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters, 19(11), 2037–2040.

    Article  Google Scholar 

  8. Zhong, C., & Zhang, Z. (2016). Non-Orthogonal Multiple Access With Co- operative Full-Duplex Relaying. IEEE Communications Letters, 20(12), 2478–2481.

    Article  Google Scholar 

  9. Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34, 938.

    Article  Google Scholar 

  10. Varshney, L. (2008). Transporting information and energy simultaneously. In Proceedings of IEEE international symposium on information theory (ISIT), Toronto, Canada, pp. 1612–1616.

  11. Sun, H., Zhou, F., Hu, R. Q., & Hanzo, L. (2019). Robust beamforming design in a NOMA cognitive radio network relying on SWIPT. IEEE Journal on Selected Areas in Communications, 37(1), 142–155.

    Article  Google Scholar 

  12. Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016). Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(12), 10152–10157.

    Article  Google Scholar 

  13. Bhattacharjee, S., Acharya, T., & Bhattacharya, U. (2018). NOMA inspired multicasting in cognitive radio networks. IET Communications, 12(15), 1845–1853.

    Article  Google Scholar 

  14. Zhou F., Chu Z., Sun, H. and Leung, V.C.M. (2018) Resource Allocation for Secure MISO-NOMA Cognitive Radios Relying on SWIPT. In IEEE international conference on communications (ICC), pp. 1-6.

  15. Liu, M., Song, T., & Gui, G. (2018). Deep cognitive perspective: Resource allocation for NOMA based heterogeneous IoT with imperfect SIC. IEEE Internet of Things Journal, 6(2), 2885–2894.

  16. Xu, L., Zhou, Y., Wang, P., & Liu, W. (2018). Max-Min resource allocation for video transmission in NOMA-based cognitive wireless networks. IEEE Transactions on Communications, 66(11), 5804–5813.

    Article  Google Scholar 

  17. Fenglian, C., Yi, S., & Yucui, Y. (2020). ARQ assisted short-packet communications for NOMA networks over Nakagami-m fading channels. IEEE Access, 8, 158263.

    Article  Google Scholar 

  18. Xiang, Z., Yang, W., Cai, Y., Ding, Z., Song, Y., & Zou, Y. (2020). NOMA-assisted secure short-packet communications in IoT. IEEE Wireless Communications, 27(4), 8.

    Article  Google Scholar 

  19. Erturk, Eray, Yildiz, Ozlem, Shahsavari, Shahram, & Akar, Nail. (2021). Power allocation and temporal fair user group scheduling for downlink NOMA. Telecommunication Systems, 77, 753–766.

    Article  Google Scholar 

  20. Balyan, Vipin. (2021). Cooperative relay to relay communication using NOMA for energy efficient wireless communication. Telecommunication Systems, 77, 271–281.

    Article  Google Scholar 

  21. Iswarya, N., & Jayashree, L. S. (2021). A survey on successive interference cancellation schemes in non-orthogonal multiple access for future radio access. Wireless Personal Communications, 120, 1057–1078.

    Article  Google Scholar 

  22. Zeeshan, Asif MahmoodMuhammad., & Ashraf, Tabinda. (2021). A new hybrid CDMA-NOMA scheme with power allocation and user clustering for capacity improvement. Telecommuniation Systems, 78, 225–237.

    Article  Google Scholar 

  23. Thirunavukkarasu, Ramya, & Balasubramanian, Ramachandran. (2021). An efficient code domain NOMA scheme with enhanced spectral and energy efficiency for networks beyond 5G. Wireless Personal Communications, 120, 353–377.

    Article  Google Scholar 

  24. Alnwaimi, G., & Boujemaa, H. (2018). Adaptive packet length and MCS using average and instantaneous SNR. IEEE Transactions on Vehciular Technology, 67(11), 10519–10527.

    Article  Google Scholar 

  25. Proakis, J. (2007). Digital communications. Mac Graw-Hill.

  26. Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.

Download references

Funding

This publication received no funding.

Author information

Authors and Affiliations

Authors

Contributions

The paper is the contribution of Prof. Ghassan Alnwaimi and Prof. Hatem Boujemaa.

Corresponding author

Correspondence to Ghassan Alnwaimi.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest for this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnwaimi, G., Boujemaa, H. Optimal packet length for non orthogonal multiple access. Telecommun Syst 79, 357–367 (2022). https://doi.org/10.1007/s11235-021-00852-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00852-4

Keywords

Navigation