Skip to main content
Log in

Inter-slice resource management for 5G radio access network using markov decision process

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The vision of the 5G network is to provide wireless connectivity to different market verticals with a diverse quality of service requirements. To meet the requirements of these verticals, network resources at each layer (core, transmission, and radio access) of 5G architecture need efficient resource management. Network slicing is one of the key features of 5G networks where network resources form virtual sub-networks to handle diverse resource requirements from verticals. In this paper, we propose a framework using multi-objective Markov decision process that models radio resource management (RRM) for 5G radio access network slices. In particular, we present a multi-objective scheduler for 5G radio that allocates inter-slice radio resources efficiently for enhanced mobile broadband (eMBB) and ultra-reliable low latency communication (uRLLC) slices. Probabilistic model checking is used to analyze the performance of the scheduler and to perform quantitative verification. The proposed scheduler takes into account key design parameters such as mmWave radio channel condition and network load condition to optimize the performance of bandwidth greedy eMBB and latency sensitive uRLLC slices through appropriate joint resource allocation. Results show that the proposed scheduler provides optimal strategy synthesis for joint resource management of shared radio bandwidth in eMBB and uRLLC slices .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Code availability

PRISM, probabilistic Model checker tool used for system modeling and analysis.

References

  1. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Taoka, H., et al. (2014). Scenarios for 5g mobile and wireless communications: the vision of the metis project. IEEE Communications Magazine, 52(5), 26–35.

    Article  Google Scholar 

  2. “5G Study on scenarios and requirements for next generation access technologies. Release 16,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.913, Jul 2020, version 16.0.0. [Online]. Available: https://www.3gpp.org/ftp/Specs/html-info/38913.htm

  3. Rao, S. K., & Prasad, R. (2018). Impact of 5g technologies on industry 4.0. Wireless personal communications, 100(1), 145–159.

    Article  Google Scholar 

  4. Ferrus, R., Sallent, O., Pérez-Romero, J., & Agusti, R. (2018). On 5g radio access network slicing: Radio interface protocol features and configuration. IEEE Communications Magazine, 56(5), 184–192.

    Article  Google Scholar 

  5. 3GPP, “Service requirements for the 5G system, stage 1. Release 18,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 22.261, 2021, version 18.1.1. [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications

  6. Samdanis, K., & Taleb, T. (2020). The road beyond 5g: A vision and insight of the key technologies. IEEE Network, 34(2), 135–141.

    Article  Google Scholar 

  7. “NR and NG-RAN Overall Description, stage-2. Release 16,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.300, Jul 2020, version 16.2.0. [Online]. Available: https://www.3gpp.org/ftp/Specs/html-info/38300.htm

  8. “System Architecture for the 5G System (5GS), stage 2. Release 15,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 23.501, Dec 2020, version 15.12.0. [Online]. Available: https://www.3gpp.org/ftp/Specs/html-info/23501.htm

  9. Sattar, D., & Matrawy, A. (2019). Optimal slice allocation in 5G core networks. IEEE Networking Letters, 1(2), 48–51.

    Article  Google Scholar 

  10. Wang, Q., Alcaraz-Calero, J., Ricart-Sanchez, R., Weiss, M. B., Gavras, A., Nikaein, N., Vasilakos, X., Giacomo, B., Pietro, G., Roddy, M., et al. (2019). Enable advanced qos-aware network slicing in 5G networks for slice-based media use cases. IEEE transactions on broadcasting, 65(2), 444–453.

    Article  Google Scholar 

  11. Martiradonna, S., Abrardo, A., Moretti, M., Piro, G., Boggia, G., & “Architecting ran slicing for urllc: Design decisions and open issues,” in,. (2019). IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT). IEEE, 2019, 1–4.

  12. Akhtar, T., Tselios, C., and Politis, I. (2020). “Radio resource management: approaches and implementations from 4g to 5g and beyond,” Wireless Networks, pp. 1–4.

  13. Akhtar, T., Politis, I., Tselios, C., Kotsopoulos, S., & “Cooperative game radio resource management scheme for small cell network,” in,. (2019). IEEE 2nd 5G World Forum (5GWF). IEEE, 2019, 69–73.

  14. Luong, N. C., Wang, P., Niyato, D., Liang, Y.-C., Han, Z., and Hou, F.(2018). “Applications of economic and pricing models for resource management in 5g wireless networks: A survey,” IEEE Communications Surveys & Tutorials.

  15. Alsenwi, M., Tran, N. H., Bennis, M., Pandey, S. R., Bairagi, A. K, and Hong, C. S.(2020).“Intelligent resource slicing for embb and urllc coexistence in 5g and beyond: A deep reinforcement learning based approach,” arXiv preprint arXiv:2003.07651.

  16. Yan, M., Feng, G., Zhou, J., & Qin, S. (2018). Smart multi-rat access based on multiagent reinforcement learning. IEEE Transactions on Vehicular Technology, 67(5), 4539–4551.

    Article  Google Scholar 

  17. Barakabitze, A. A., Ahmad, A., Mijumbi, R., & Hines, A. (2020). 5g network slicing using sdn and nfv: A survey of taxonomy, architectures and future challenges. Computer Networks, 167, 106984.

    Article  Google Scholar 

  18. Ordonez-Lucena, J., Ameigeiras, P., Lopez, D., Ramos-Munoz, J. J., Lorca, J., & Folgueira, J. (2017). Network slicing for 5G with sdn/nfv: Concepts, architectures, and challenges. IEEE Communications Magazine, 55(5), 80–87.

    Article  Google Scholar 

  19. Pérez-Romero, J., Sallent, O., Ferrús, R., and Agustí, R.(2018).“On the configuration of radio resource management in a sliced ran,” in NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium. IEEE, pp. 1–6.

  20. Wang, T., and Wang, S.(2021). “Online convex optimization for efficient and robust inter-slice radio resource management,” IEEE Transactions on Communications.

  21. Shi, W., Li, J., Yang, P., Ye, Q., Zhuang, W., Shen, S., and Li, X.(2021). “Two-level soft ran slicing for customized services in 5g-and-beyond wireless communications,” IEEE Transactions on Industrial Informatics.

  22. Feng, L., Zi, Y., Li, W., Zhou, F., Yu, P., & Kadoch, M. (2020). Dynamic resource allocation with ran slicing and scheduling for urllc and embb hybrid services’’. IEEE Access, 8, 34538–34551.

    Article  Google Scholar 

  23. Li, X., Ni, R., Chen, J., Lyu, Y., Rong, Z., & Du, R. (2020). End-to-end network slicing in radio access network, transport network and core network domains’’. IEEE Access, 8, 29525–29537.

    Article  Google Scholar 

  24. 3GPP, “Study on New Radio Access Technology, Physical Layer Aspects. Release 14,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.802, 2017, version 14.2.0. [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications

  25. “NR; User Equipment (UE) radio transmission and reception,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.101, Jan 2020. [Online]. Available: https://www.3gpp.org/ftp/Specs/html-info/38101.htm

  26. Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmwave) for 5g: opportunities and challenges. Wireless Networks, 21(8), 2657–2676.

    Article  Google Scholar 

  27. Roh, W., Seol, J.-Y., Park, J., Lee, B., Lee, J., Kim, Y., Cho, J., Cheun, K., & Aryanfar, F. (2014). Millimeter-wave beamforming as an enabling technology for 5g cellular communications: Theoretical feasibility and prototype results. IEEE communications magazine, 52(2), 106–113.

    Article  Google Scholar 

  28. Mumtaz, T., Muhammad, S., Aslam, M. I., and Mohammad, N. (2020) “Dual connectivity-based mobility management and data split mechanism in 4g/5g cellular networks,” IEEE Access, vol. 8, pp. 86 495–86 509.

  29. Mumtaz, T., Muhammad, S., Mohammad, N., Aslam, M. I., Ahmed, I., & “Modeling and evaluation of mobility management in mmwave cellular networks,” in,. (2018). IEEE 21st International Multi-Topic Conference (INMIC). IEEE, 2018, 1–6.

  30. “Study on channel model for frequencies from 0.5 to 100 GHz.” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.901, Jan 2020, version 16.0.0. [Online]. Available: https://www.3gpp.org/ftp/Specs/html-info/38901.htm

  31. Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on selected areas in communications, 32(6), 1164–1179.

    Article  Google Scholar 

  32. Mezzavilla, M., Goyal, S., Panwar, S., Rangan, S., and Zorzi, M.(2016). “An mdp model for optimal handover decisions in mmwave cellular networks,” in Networks and Communications (EuCNC), 2016 European Conference on. IEEE,pp. 100–105.

  33. Kwiatkowska, M., Norman, G., and Parker, D.(2011). “PRISM 4.0: Verification of probabilistic real-time systems,” in Proc. 23rd International Conference on Computer Aided Verification (CAV’11), ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, pp. 585–591.

  34. Ramasubramanian, B., Clark, A., Bushnell, L., Poovendran, R., & “Secure control under partial observability with temporal logic constraints,” in,. (2019). American Control Conference (ACC). IEEE, 2019, 1181–1188.

  35. Favarò, F. M., & Saleh, J. H. (2018). Application of temporal logic for safety supervisory control and model-based hazard monitoring. Reliability Engineering and System Safety, 169, 166–178.

    Article  Google Scholar 

  36. Cowlagi, R. V., & Zhang, Z. (2017). Route guidance for satisfying temporal logic specifications on aircraft motion. Journal of Guidance, Control and Dynamics, 40(2), 390–401.

    Article  Google Scholar 

  37. Asadi, A., & Mancuso, V. (2013). A survey on opportunistic scheduling in wireless communications. IEEE Communications Surveys and Tutorials, 15(4), 1671–1688.

    Article  Google Scholar 

  38. Chinchuluun, A., & Pardalos, P. M. (2007). A survey of recent developments in multiobjective optimization. Annals of Operations Research, 154(1), 29–50.

    Article  Google Scholar 

  39. Forejt, V., Kwiatkowska, M., and Parker, D.(2012). “Pareto curves for probabilistic model checking,” in Proc. 10th International Symposium on Automated Technology for Verification and Analysis (ATVA’12), ser. LNCS, S. Chakraborty and M. Mukund, Eds., vol. 7561. Springer, pp. 317–332.

  40. Bjornson, E., Jorswieck, E. A., Debbah, M., & Ottersten, B. (2014). Multiobjective signal processing optimization: The way to balance conflicting metrics in 5g systems. IEEE Signal Processing Magazine, 31(6), 14–23.

    Article  Google Scholar 

  41. Song, N., Sun, H., Yang, T., & “Coordinated hybrid beamforming for millimeter wave multi-user massive mimo systems,” in,. (2016). IEEE Global Communications Conference (GLOBECOM). IEEE, 2016, 1–6.

  42. Alliance, N.(2015). “5g white paper,” Next generation mobile networks, white paper, vol. 1.

  43. Anand, A., De Veciana, G., & Shakkottai, S. (2020). Joint scheduling of urllc and embb traffic in 5g wireless networks. IEEE/ACM Transactions on Networking, 28(2), 477–490.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Mumtaz.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mumtaz, T., Muhammad, S., Aslam, M.I. et al. Inter-slice resource management for 5G radio access network using markov decision process. Telecommun Syst 79, 541–557 (2022). https://doi.org/10.1007/s11235-021-00877-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00877-9

Keywords

Navigation