Skip to main content
Log in

Hybrid algorithm optimization for coverage problem in wireless sensor networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

With the continuous development of evolutionary computing, many excellent algorithms have emerged, which are applied in all walks of life to solve various practical problems. In this paper, two hybrid fish, bird and insect algorithms based on different architectures are proposed to solve the optimal coverage problem in wireless sensor networks. The algorithm combines the characteristics of three algorithms, namely, particle swarm optimization algorithm, Phasmatodea population evolution algorithm and fish migration optimization algorithm. The new algorithm has the advantages of the three algorithms. In order to prove the effectiveness of the algorithm, we first test it on 28 benchmark functions. The results show that the two hybrid fish, bird and insect algorithms with different architectures have significant advantages. Then we apply the proposed algorithm to solve the coverage problem of wireless sensor networks through experimental simulation. The experimental results show the advantages of our proposed algorithm and prove that our proposed hybrid fish, bird and insect algorithm is suitable for solving the coverage problem of wireless sensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Panchal, A., & Singh, R. K. (2021). Ehcr-fcm: energy efficient hierarchical clustering and routing using fuzzy c-means for wireless sensor networks. Telecommunication Systems, 76(2), 251–263.

    Article  Google Scholar 

  2. Khan, M. K., & Alghathbar, K. (2010). Cryptanalysis and security improvements of - two-factor user authentication in wireless sensor networks. Sensors, 10(3), 2450–2459.

    Article  Google Scholar 

  3. Kumari, S., Khan, M. K., & Atiquzzaman, M. (2015). User authentication schemes for wireless sensor networks: a review. Ad Hoc Networks, 27, 159–194.

    Article  Google Scholar 

  4. Liu, N., Pan, J.-S., Wang, J., et al. (2019). An adaptation multi-group quasi-affine transformation evolutionary algorithm for global optimization and its application in node localization in wireless sensor networks. Sensors, 19(19), 4112.

    Article  Google Scholar 

  5. Alghamdi, T. A. (2020). Energy efficient protocol in wireless sensor network: optimized cluster head selection model. Telecommunication Systems, 74(3), 331–345.

    Article  Google Scholar 

  6. Jaiswal, K., & Anand, V. (2021). A qos aware optimal node deployment in wireless sensor network using grey wolf optimization approach for iot applications. Telecommunication Systems, 78, 559–576.

    Article  Google Scholar 

  7. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95-international conference on neural networks 4 (pp. 1942–1948). IEEE

  8. Shufen, Q., Chaoli, S., Zhang, G., He, X., & Tan, Y. (2020). A modified particle swarm optimization based on decomposition with different ideal points for many-objective optimization problems. Complex & Intelligent Systems, 6(2), 263–274.

    Article  Google Scholar 

  9. Pan, J.-S., Tsai, P.-W., & Liao, Y.-B. (2010). Fish migration optimization based on the fishy biology. In 2010 fourth international conference on genetic and evolutionary computing (pp. 783–786). IEEE

  10. Song, P.-C., Chu, S.-C., Pan, J.-S., & Yang, H. (2020). Phasmatodea population evolution algorithm and its application in length-changeable incremental extreme learning machine. In 2020 2nd international conference on industrial artificial intelligence (IAI) (pp. 1–5). IEEE

  11. Chu, S.-C., Tsai, P.-W., & Pan, J.-S. (2006). Cat swarm optimization. In Pacific rim international conference on artificial intelligence (pp. 854–858). Springer

  12. Santosa, B., & Ningrum, M.K. (2009). Cat swarm optimization for clustering. In 2009 international conference of soft computing and pattern recognition (pp. 54–59). IEEE

  13. Pappula, L., & Ghosh, D. (2014). Linear antenna array synthesis using cat swarm optimization. AEU-International Journal of Electronics and Communications, 68(6), 540–549.

    Google Scholar 

  14. Meng, Z., & Pan, J.-S. (2018). Quasi-affine transformation evolution with external archive (quatre-ear): an enhanced structure for differential evolution. Knowledge-Based Systems, 155, 35–53.

    Article  Google Scholar 

  15. Sung, T.-W., Zhao, B., & Zhang, X. (2021). Quasi-affine transformation evolutionary with double excellent guidance. Wireless Communications and Mobile Computing, 2021, 5591543.

    Google Scholar 

  16. Malathy, E., Asaithambi, M., Dheeraj, A., & Arputharaj, K. (2021). Hybrid bird swarm optimized quasi affine algorithm based node location in wireless sensor networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08934-x

    Article  Google Scholar 

  17. Glover, F., & Laguna, M. (1998). Tabu search. In Handbook of combinatorial optimization (pp. 2093–2229). Springer

  18. Huang, H.-C., Chu, S.-C., Pan, J.-S., Huang, C.-Y., & Liao, B.-Y. (2011). Tabu search based multi-watermarks embedding algorithm with multiple description coding. Information Sciences, 181(16), 3379–3396.

    Article  Google Scholar 

  19. Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In 2009 world congress on nature & biologically inspired computing (NaBIC) (pp. 210–214). IEEE

  20. Song, P.-C., Pan, J.-S., & Chu, S.-C. (2020). A parallel compact cuckoo search algorithm for three-dimensional path planning. Applied Soft Computing, 94, 106443.

    Article  Google Scholar 

  21. Wang, G.-G., Deb, S., Gandomi, A. H., Zhang, Z., & Alavi, A. H. (2016). Chaotic cuckoo search. Soft Computing, 20(9), 3349–3362.

    Article  Google Scholar 

  22. Pan, J.-S., Meng, Z., Chu, S.-C., & Xu, H.-R. (2017). Monkey king evolution: an enhanced ebb-tide-fish algorithm for global optimization and its application in vehicle navigation under wireless sensor network environment. Telecommunication Systems, 65(3), 351–364.

    Article  Google Scholar 

  23. Balasubramanian, D. L., & Govindasamy, V. (2019). Binary monkey-king evolutionary algorithm for single objective target based wsn. EAI Endorsed Transactions on Internet of Things, 5(19), 163970.

    Article  Google Scholar 

  24. Kalaipriyan, T., Rajaguru, D., Amudhavel, J., Vengattaraman, T., & Sujatha, P. (2017). Monkey king algorithm for solving minimum energy broadcast in wireless sensor network. Advances and Applications in Mathematical Sciences, 7(1), 129–145.

    Google Scholar 

  25. Wang, X., Pan, J.-S., & Chu, S.-C. (2020). A parallel multi-verse optimizer for application in multilevel image segmentation. IEEE Access, 8, 32018–32030.

    Article  Google Scholar 

  26. Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495–513.

    Article  Google Scholar 

  27. Ewees, A. .A., Abd El Aziz, M., & Hassanien, A. .E. (2019). Chaotic multi-verse optimizer-based feature selection. Neural computing and applications, 31(4), 991–1006.

    Article  Google Scholar 

  28. Yang, X.-S. (2010). Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-inspired Computation, 2(2), 78–84.

    Article  Google Scholar 

  29. Xue, X. (2020). A compact firefly algorithm for matching biomedical ontologies. Knowledge and Information Systems, 62, 2855–2871.

    Article  Google Scholar 

  30. Talatahari, S., & Azizi, M. (2021). Chaos game optimization: a novel metaheuristic algorithm. Artificial Intelligence Review, 54(2), 917–1004.

    Article  Google Scholar 

  31. Ramadan, A., Kamel, S., Hussein, M. M., & Hassan, M. H. (2021). A new application of chaos game optimization algorithm for parameters extraction of three diode photovoltaic model. IEEE Access, 9, 51582–51594.

    Article  Google Scholar 

  32. Hashim, F. A., Hussain, K., Houssein, E. H., Mabrouk, M. S., & Al-Atabany, W. (2021). Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Applied Intelligence, 51(3), 1531–1551.

    Article  Google Scholar 

  33. Desuky, A. S., Hussain, S., Kausar, S., Islam, M. A., & El Bakrawy, L. M. (2021). Eaoa: an enhanced archimedes optimization algorithm for feature selection in classification. IEEE Access, 9, 120795–120814.

    Article  Google Scholar 

  34. Covic, N., & Lacevic, B. (2020). Wingsuit flying search-a novel global optimization algorithm. IEEE Access, 8, 53883–53900.

    Article  Google Scholar 

  35. Du, L., Zhang, Y., Sato, S., Todo, Y., Tang, Z., & Gao, S. (2020). Differential evolution-based wingsuit flying search for optimization. In 2020 13th international symposium on computational intelligence and design (ISCID) (pp. 7–12). IEEE

  36. Naji Alwerfali, H. .S., AA Al-qaness, M., Abd Elaziz, M., Ewees, A. .A., Oliva, D., & Lu, S. (2020). Multi-level image thresholding based on modified spherical search optimizer and fuzzy entropy. Entropy, 22(3), 328.

    Article  Google Scholar 

  37. Zhao, J., Tang, D., Liu, Z., Cai, Y., & Dong, S. (2020). Spherical search optimizer: a simple yet efficient meta-heuristic approach. Neural Computing and Applications, 32(13), 9777–9808.

    Article  Google Scholar 

  38. Zhou, G., Zhou, Y., & Zhao, R. (2021). Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 17(2), 533.

    Article  Google Scholar 

  39. Zhang, G., Hu, Y., Sun, J., & Zhang, W. (2020). An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints. Swarm and Evolutionary Computation, 54, 100664.

    Article  Google Scholar 

  40. Sun, L., Cheng, X., & Liang, Y. (2010). Solving job shop scheduling problem using genetic algorithm with penalty function. International Journal of Intelligent information processing, 1(2), 65–77.

    Article  Google Scholar 

  41. ZainEldin, H., Badawy, M., Elhosseini, M., Arafat, H., & Abraham, A. (2020). An improved dynamic deployment technique based-on genetic algorithm (iddt-ga) for maximizing coverage in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11, 4177–4194.

    Article  Google Scholar 

  42. Xiu-Wu, Y., Hao, Y., Yong, L., & Ren-rong, X. (2020). A clustering routing algorithm based on wolf pack algorithm for heterogeneous wireless sensor networks. Computer Networks, 167, 106994.

    Article  Google Scholar 

  43. Liu, X., & He, D. (2014). Ant colony optimization with greedy migration mechanism for node deployment in wireless sensor networks. Journal of Network and Computer Applications, 39, 310–318.

    Article  Google Scholar 

  44. Gul, F., Rahiman, W., Alhady, S., Ali, A., Mir, I., & Jalil, A. (2021). Meta-heuristic approach for solving multi-objective path planning for autonomous guided robot using pso-gwo optimization algorithm with evolutionary programming. Journal of Ambient Intelligence and Humanized Computing, 12(7), 7873–7890.

    Article  Google Scholar 

  45. Kiani, F., Seyyedabbasi, A., Aliyev, R., Gulle, M. U., Basyildiz, H., & Shah, M. A. (2021). Adapted-rrt: novel hybrid method to solve three-dimensional path planning problem using sampling and metaheuristic-based algorithms. Neural Computing and Applications, 33, 15569–15599.

    Article  Google Scholar 

  46. Huang, H.-C. (2014). Fpga-based parallel metaheuristic pso algorithm and its application to global path planning for autonomous robot navigation. Journal of Intelligent & Robotic Systems, 76(3), 475–488.

    Article  Google Scholar 

  47. Luong, D.K., Hu, Y.-F., Li, J.-P., & Ali, M. (2020). Metaheuristic approaches to the joint controller and gateway placement in 5g-satellite sdn networks. In: ICC 2020-2020 IEEE international conference on communications (ICC) (pp. 1–6). IEEE

  48. Shuvo, M. S. A., Munna, M. A. R., Sarker, S., Adhikary, T., Razzaque, M. A., Hassan, M. M., Aloi, G., & Fortino, G. (2021). Energy-efficient scheduling of small cells in 5g: a meta-heuristic approach. Journal of Network and Computer Applications, 178, 102986.

    Article  Google Scholar 

  49. Ganame, H., Yingzhuang, L., Ghazzai, H., & Kamissoko, D. (2019). 5g base station deployment perspectives in millimeter wave frequencies using meta-heuristic algorithms. Electronics, 8(11), 1318.

    Article  Google Scholar 

  50. Wang, Z., Kung, S.-Y., Zhang, J., Khan, J., Xuan, J., & Wang, Y. (2003). Computational intelligence approach for gene expression data mining and classification. In 2003 international conference on multimedia and expo. ICME’03. Proceedings (Cat. No. 03TH8698), 3 (pp. III–449). IEEE

  51. Suganya, P., & Sumathi, C. (2015). A novel metaheuristic data mining algorithm for the detection and classification of parkinson disease. Indian Journal of Science and Technology, 8(14), 1–9.

    Article  Google Scholar 

  52. Nezhad, S.E., Kamali, H.J., & Moghaddam, M.E. (2010). Solving k-coverage problem in wireless sensor networks using improved harmony search. In 2010 international conference on broadband, wireless computing, communication and applications (pp. 49–55).

  53. Akshay, N., Kumar, M.P., Harish, B., & Dhanorkar, S. (2010). An efficient approach for sensor deployments in wireless sensor network. In INTERACT-2010 (pp. 350–355).

  54. So, A.M.-C., & Ye, Y. (2005). On solving coverage problems in a wireless sensor network using voronoi diagrams. In X. Deng & Y. Ye (Eds.), Internet and Network Economics (pp. 584–593). Springer.

  55. Manju, Bhambu, P., & Kuma, S. (2020). Target k-coverage problem in wireless sensor networks. Journal of Discrete Mathematical Sciences and Cryptography, 23(2), 651–659.

    Article  Google Scholar 

  56. Chu, S.-C., Roddick, J. F., & Pan, J.-S. (2005). A parallel particle swarm optimization algorithm with communication strategies. Journal of Information Science and Engineering, 21(4), 809–818.

    Google Scholar 

  57. Temel, S., Unaldi, N., & Kaynak, O. (2014). On deployment of wireless sensors on 3-d terrains to maximize sensing coverage by utilizing cat swarm optimization with wavelet transform. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(1), 111–120.

    Article  Google Scholar 

  58. Liu, X. .-W., & Tu, X. .-M. (2001). Generalizing bresenham’s algorithm to 3d straight-line. Journal of Computer Aided Design & Computer Graphics, 13(9), 779–782.

  59. Gao, M., Pan, J.-S., Li, J.-P., Zhang, Z.-P., & Chai, Q.-W. (2021). 3-d terrains deployment of wireless sensors network by utilizing parallel gases brownian motion optimization. Journal of Internet Technology, 22(1), 13–29.

    Google Scholar 

  60. Shi, Y., & Eberhart, R.C. (1999). Empirical study of particle swarm optimization. In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), 3 (pp. 1945–1950). IEEE

  61. Liang, J., Qu, B., Suganthan, P., & Hernández-Díaz, A. G. (2013). Problem definitions and evaluation criteria for the cec 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 201212(34), 281–295.

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Fundings

None. No fundings to declare.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, HD., Chu, SC., Hu, P. et al. Hybrid algorithm optimization for coverage problem in wireless sensor networks. Telecommun Syst 80, 105–121 (2022). https://doi.org/10.1007/s11235-022-00883-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00883-5

Keywords

Navigation