Skip to main content
Log in

Measuring synchronization precision in mobile sensor networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Many applications involving the use of drones in sensor networks require precise synchronization from the involved sensors. However, not many papers evaluate the precision of the synchronism that can be obtained by means of exchanging packets in mobile sensor networks. This lack can be explained by the difficulties encountered in modeling the swift movements of the drones and the large volumes of these elements in a monitored area. Measuring phase noise also requires techniques that are quite different from those commonly used to analyze data networks. This paper suggests a simulation model based on discrete events, deployed in a Matlab Simulink® tool, which combines calculating loss probability in a mobile sensor network with measuring phase error between the sensor clock and the reference clock. Phase error is evaluated by Maximum Time Interval Error (MTIE) and Allan Deviation (ADEV) statistics. Results show that synchronism precision is strongly connected to the probability of message loss and that, with fewer losses, precision in the order of tens of nano-seconds can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zervopoulos, A., et al. (2020). Wireless sensor network synchronization for precision agriculture applications. Agriculture, 10(3), 1–20.

    Article  Google Scholar 

  2. De Rango, F., Potrino, G., Tropea, M., Santamaria, A. F., & Fazio, P. (2019). Scalable and ligthway bio-inspired coordination protocol for FANET in precision agriculture applications. Computers & Electrical Engineering, 74, 305–318.

    Article  Google Scholar 

  3. Bekmezci, İ, Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254–1270.

    Article  Google Scholar 

  4. Federal Aviation Administration. (2016). Summary of small unmanned aircaraft rule (part 107). Washington DC.

  5. DECEA. (2015). “ICA 100-40 - Sistemas de Aeronaves Remotamente Pilotadas e o Acesso ao Espaço Aéreo Brasileiro,” p. 76.

  6. Sahingoz, O. K. (2013). Networking models in flying ad-hoc networks (FANETs): Concepts and challenges. Journal of Intelligent and Robotic Systems, 74(1–2), 513–527.

    Google Scholar 

  7. Ely, T. A., Burt, E. A., Prestage, J. D., Seubert, J. M., & Tjoelker, R. L. (2018). Using the deep space atomic clock for navigation and science. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(6), 950–961.

    Article  Google Scholar 

  8. Sommer, P., Wattenhofer, R. (2009). Gradient Clock synchronization in wireless sensor networks. In International conference on information processing in sensor networks, 2009. IPSN 2009. pp. 37–48.

  9. Cho, H. C. H., Jung, J. J. J., Cho, B. C. B., Jin, Y. J. Y., Lee, S.-W. L. S.-W., Baek, B. Y. (2009) Precision time synchronization using IEEE 1588 for wireless sensor networks. In 2009 international conference on computational science and engineering, vol. 2.

  10. del Río, J., Toma, D., Shariat-Panahi, S., Mànuel, A., & Ramos, H. G. (2012). Precision timing in ocean sensor systems. Measurement Science and Technology, 23(2), 025801.

    Article  Google Scholar 

  11. Mills, D. L. (1991). Internet time synchronization: The network time protocol. IEEE Transactions on Communications, 39(10), 1482–1493.

    Article  Google Scholar 

  12. Novick, A. N., Lombardi, M. A. (2015). Practical limitations of NTP time transfer. In 2015 joint conference of the IEEE international frequency control symposium & the European frequency and time forum, FCS 2015 - Proc., no. April, pp. 570–574.

  13. IEEE. (2008). IEEE Std 1588–2008, IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, vol. 2008.

  14. Elson, J., Girod, L., & Estrin, D. (2002). Fine-grained network time synchronization using reference broadcasts. ACM SIGOPS Operating Systems Review, 36, 147.

    Article  Google Scholar 

  15. Ganeriwal, S., Kumar, R., Srivastava,M. B. (2003). Timing-sync protocol for sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems - SenSys ’03, pp. 138–149.

  16. Maróti, M., Kusy,B., Simon, G., Lédeczi, Á. (2004). The flooding time synchronization protocol. In ACM International Conference on Embedded Networked Sensor Systems, pp. 39–49.

  17. Wobschall, D., Ma, Y. (2010) Synchronization of wireless sensor networks using a modified IEEE 1588 protocol. In 2010 IEEE international symposium on precision clock synchronization for measurement, control and communication, pp. 67–70.

  18. Aleksander, N., Kamil, K., Krzysztof, D., & Roman, K. (2010). Differential navigation for UAV platforms with mobile reference station. In H. Fujita & J. Sasaki (Eds.), Selected topics in applied computer science (pp. 465–471). WSEAS Press.

    Google Scholar 

  19. Wang, Y., Wu, S., Chen, Z., Gao, X., & Chen, G. (2017). Coverage problem with uncertain properties in wireless sensor networks: A survey. Computer Networks, 123, 200–232.

    Article  Google Scholar 

  20. Chakraborty, S., Goyal, N. K., Mahapatra, S., & Soh, S. (2020). A Monte-Carlo Markov chain approach for coverage-area reliability of mobile wireless sensor networks with multistate nodes. Reliability Engineering and System Safety, 193, 14.

    Article  Google Scholar 

  21. Wang, B., Lim, H. B., & Ma, D. (2009). A survey of movement strategies for improving network coverage in wireless sensor networks. Computer Communications, 32(13–14), 1427–1436.

    Article  Google Scholar 

  22. Senouci, M. R., Mellouk, A., Asnoune, K., & YazidBouhidel, F. (2015). Movement-assisted sensor deployment algorithms: A survey and taxonomy. IEEE Communications Surveys Tutorials, 17, 2493–2510.

    Article  Google Scholar 

  23. Deif, D. S., & Gadallah, Y. (2014). Classification of wireless sensor networks deployment techniques. IEEE Communications Surveys & Tutorials, 16(2), 834–855.

    Article  Google Scholar 

  24. Farsi, M., Elhosseini, M. A., Badawy, M., Arafat Ali, H., & Zain Eldin, H. (2019). Deployment techniques in wireless sensor networks, coverage and connectivity: A survey. IEEE Access, 7, 28940–28954.

    Article  Google Scholar 

  25. Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 21(1), 45–60.

    Article  Google Scholar 

  26. Kulkarni, R. V., Member, S., & Kumar, G. (2011). Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(2), 262–267.

    Article  Google Scholar 

  27. Aziz, N. A. B. A., Mohemmed, A. W., Alias, M. Y. (2009) A wireless sensor network coverage optimization algorithm based on particle swarm optimization and voronoi diagram. In 2009 International conference on networking, sensing and control, pp. 602–607.

  28. Aurenhammer, F. (1991). Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing Surveys, 23(3), 345–405.

    Article  Google Scholar 

  29. Alia, O. M., & Al-Ajouri, A. (2017). Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm. IEEE Sensors Journal, 17(3), 882–896.

    Article  Google Scholar 

  30. Eiras, F. C. S., Zucchi, W. L. (2019). A statistical method for area coverage estimation and loss probability analysis on mobile sensor. In 6th international electronic conference on sensors and applications, pp. 1–21.

  31. Tirado-Andrés, F., & Araujo, A. (2019). Performance of clock sources and their influence on time synchronization in wireless sensor networks. International Journal of Distributed Sensor Networks. https://doi.org/10.1177/1550147719879372

    Article  Google Scholar 

  32. ITU-T G.810. (1996). ITU-T G.810 Definitions and terminology for synchronization networks.

  33. Riley, W. J. (1994). Handbook of frequency stability analysis, vol. 31, no. 1. NIST Special Publication 1065.

    Google Scholar 

  34. ITU-T G.8261. (2008). ITU-T G.8261/Y.1361 timing and synchronization aspects in packet networks.

  35. ITU-T G.8262. (2010). ITU-T G.8262/Y.1362 - timing characteristics of a synchronous ethernet equipment slave clock.

  36. Dobrogowski, A., & Kasznia, M. (2010). Methods of real-time calculation of allan deviation and time deviation. Advances in Electronics and Telecommunications, 1(2), 42–46.

    Google Scholar 

  37. MathWorks. (2011). SIMULINK academic version, R2011.

  38. Eiras, F. C. S., & Zucchi, W. L. (2021). A simulation model for area coverage and loss probability on mobile sensor networks. Telecommunication Systems, 76, 3–16. https://doi.org/10.1007/s11235-020-00698-2

    Article  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. S. Eiras.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eiras, F.C.S., Zucchi, W.L. Measuring synchronization precision in mobile sensor networks. Telecommun Syst 81, 253–267 (2022). https://doi.org/10.1007/s11235-022-00944-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00944-9

Keywords

Navigation