Abstract
Very soon, trillions of wireless gadgets will be linked to billions of people, resulting in an overloaded spectrum. Device-to-device (D2D) wireless communication offers a new paradigm for addressing these impending issues by permitting the transmission of data between proximity devices. However, if the D2D communication system is not secured, the quality-of-service may be disrupted by a variety of security assaults. Furthermore, the system will become unreliable, posing a hurdle to D2D’s expansion. In this work, we look into the security features of D2D communication, which are crucial for its widespread adoption. This article provides an in-depth review of the conventional security features of D2D communication, as well as associated issues. This work identifies the possible solutions to be carried out and the future directions from existing research work by analyzing security architecture, security threats, existing algorithms, open security challenges, and limitations. The fundamental goal of this effort is to help related researchers to understand D2D security and privacy concerns in a nutshell.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11235-022-00954-7/MediaObjects/11235_2022_954_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11235-022-00954-7/MediaObjects/11235_2022_954_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11235-022-00954-7/MediaObjects/11235_2022_954_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11235-022-00954-7/MediaObjects/11235_2022_954_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11235-022-00954-7/MediaObjects/11235_2022_954_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11235-022-00954-7/MediaObjects/11235_2022_954_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11235-022-00954-7/MediaObjects/11235_2022_954_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11235-022-00954-7/MediaObjects/11235_2022_954_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11235-022-00954-7/MediaObjects/11235_2022_954_Fig9_HTML.png)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Doppler, K., Ribeiro, C. B., & Kneckt, J. (2011). Advances in D2D communications: Energy efficient service and device discovery radio. In 2011 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE) (pp. 1–6). https://doi.org/10.1109/WIRELESSVITAE.2011.5940857.
Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49. https://doi.org/10.1109/MCOM.2009.5350367
Li, Z., Moisio, M., Uusitalo, M. A., Lunden, P., Wijting, C., Moya, F. S., Yaver, A., & Venkatasubramanian, V. (2014). Overview on initial METIS D2D Concept. In 2014 1st international conference on 5G for ubiquitous connectivity (5GU) (203–208). https://doi.org/10.4108/icst.5gu.2014.258096.
Chai, Y., Du, Q., & Ren, P. (2013). Partial time-frequency resource allocation for device-to-device communications underlaying cellular networks. IEEE International Conference on Communications (ICC), 2013, 6055–6059. https://doi.org/10.1109/ICC.2013.6655570
Ali, K. S., ElSawy, H., & Alouini, M. (2016). Modeling cellular networks with full-duplex D2D communication: A Stochastic Geometry Approach. IEEE Transactions on Communications, 64(10), 4409–4424. https://doi.org/10.1109/TCOMM.2016.2601912
Lin, X., Andrews, J. G., Ghosh, A., & Ratasuk, R. (2014). An overview of 3GPP device-to-device proximity services. IEEE Communications Magazine, 52(4), 40–48. https://doi.org/10.1109/MCOM.2014.6807945
Andreev, S., Pyattaev, A., Johnsson, K., Galinina, O., & Koucheryavy, Y. (2014). Cellular traffic offloading onto network-assisted device-to-device connections. IEEE Communications Magazine, 52(4), 20–31. https://doi.org/10.1109/MCOM.2014.6807943
Zhao, P., Feng, L., Yu, P., Li, W., & Qiu, X. (2017). A social-aware resource allocation for 5G device-to-device multicast communication. IEEE Access, 5, 15717–15730. https://doi.org/10.1109/ACCESS.2017.2731805
Lien, S.-Y., Chien, C.-C., Tseng, F.-M., & Ho, T.-C. (2016). 3GPP device-to-device communications for beyond 4G cellular networks. IEEE Communications Magazine, 54(3), 29–35. https://doi.org/10.1109/MCOM.2016.7432168
Lin, X., Ratasuk, R., Ghosh, A., & Andrews, J. G. (2014). Modeling, analysis, and optimization of multicast device-to-device transmissions. IEEE Transactions on Wireless Communications, 13(8), 4346–4359. https://doi.org/10.1109/TWC.2014.2320522
Pappalardo, I., Quer, G., Rao, B. D., & Zorzi, M. (2016). Caching strategies in heterogeneous networks with D2D, small BS and macro BS communications. IEEE International Conference on Communications (ICC), 2016, 1–6. https://doi.org/10.1109/ICC.2016.7511330
Mumtaz, S., & Rodriguez, J. (2014). Introduction to D2D communication. In: Mumtaz, S., & Rodriguez, J. (Eds.) Smart device to smart device communication (pp. 1–22). Cham: Springer. https://doi.org/10.1007/978-3-319-04963-2_1.
Gregori, M., Gómez-Vilardebó, J., Matamoros, J., & Gündüz, D. (2016). Wireless content caching for small cell and D2D networks. IEEE Journal on Selected Areas in Communications, 34(5), 1222–1234. https://doi.org/10.1109/JSAC.2016.2545413
Alam, M., Yang, D., Rodriguez, J., & Abd-alhameed, R. A. (2014). Secure device-to-device communication in LTE-A. IEEE Communications Magazine, 52(4), 66–73. https://doi.org/10.1109/MCOM.2014.6807948
Bai, B., Wang, L., Han, Z., Chen, W., & Svensson, T. (2016). Caching based socially-aware D2D communications in wireless content delivery networks: A hypergraph framework. IEEE Wireless Communications, 23(4), 74–81. https://doi.org/10.1109/MWC.2016.7553029
Yu, S., Ejaz, W., Guan, L., et al. (2017). Resource allocation schemes in d2d communications: overview, classification, and challenges. Wireless Personal Communications, 96, 303–322. https://doi.org/10.1007/s11277-017-4168-5
Lien, S.-Y., Chien, C.-C., Liu, G.S.-T., Tsai, H.-L., Li, R., & Wang, Y. J. (2016). Enhanced LTE device-to-device proximity services. IEEE Communications Magazine, 54(12), 174–182. https://doi.org/10.1109/MCOM.2016.1500670CM
Asadi, A., Wang, Q., & Mancuso, V. (2014). A survey on Device-to-Device communication in cellular networks. IEEE Communications Surveys & Tutorials, 16(4), 1801–1819. https://doi.org/10.1109/COMST.2014.2319555
Liu, J., Kato, N., Ma, J., & Kadowaki, N. (2015). Device-to-device communication in LTE-advanced networks: A survey. IEEE Communications Surveys & Tutorials, 17(4), 1923–1940. https://doi.org/10.1109/COMST.2014.2375934
Goratti, L., Gomez, K. M., Fedrizzi, R., & Rasheed, T. (2013). A novel device-to-device communication protocol for public safety applications. IEEE Globecom Workshops (GC Wkshps), 2013, 629–634. https://doi.org/10.1109/GLOCOMW.2013.6825058
Mach, P., Becvar, Z., & Vanek, T. (2015). In-Band device-to-device communication in OFDMA cellular networks: A survey and challenges. IEEE Communications Surveys & Tutorials, 17(4), 1885–1922. https://doi.org/10.1109/COMST.2015.2447036
Fodor, G., Roger, S., Rajatheva, N., Slimane, S. B., Svensson, T., Popovski, P., Da Silva, J. M. B., & Ali, S. (2016). An overview of device-to-device communications technology components in METIS. IEEE Access, 4, 3288–3299. https://doi.org/10.1109/ACCESS.2016.2585188
Rawat, P., Haddad, M., & Altman, E. (2015). Towards efficient disaster management: 5G and device to device communication. In 2015 2nd International conference on information and communication technologies for disaster management (ICT-DM) (pp. 79–87). https://doi.org/10.1109/ICT-DM.2015.7402056.
Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232. https://doi.org/10.1109/ACCESS.2015.2461602
Sun, W., Ström, E. G., Brännström, F., Sui, Y., & Sou, K. C. (2014). D2D-based V2V communications with latency and reliability constraints. IEEE Globecom Workshops (GC Wkshps), 2014, 1414–1419. https://doi.org/10.1109/GLOCOMW.2014.7063632
Cheng, P., Deng, L., Yu, H., Xu, Y., & Wang, H. (2012). Resource allocation for cognitive networks with D2D communication: An evolutionary approach. IEEE Wireless Communications and Networking Conference (WCNC), 2012, 2671–2676. https://doi.org/10.1109/WCNC.2012.6214252
Liang, L., Li, G. Y., & Xu, W. (2017). Resource allocation for D2D-enabled vehicular communications. IEEE Transactions on Communications, 65(7), 3186–3197. https://doi.org/10.1109/TCOMM.2017.2699194
Meng, Y., Jiang, C., Chen, H.-H., & Ren, Y. (2017). Cooperative device-to-device communications: Social networking perspectives. IEEE Network, 31(3), 38–44. https://doi.org/10.1109/MNET.2017.1600081NM
Abrardo, A., Fodor, G., & Tola, B. (2015). Network coding schemes for device-to-device communications based relaying for cellular coverage extension. In 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 670–674). https://doi.org/10.1109/SPAWC.2015.7227122.
Li, Z., Moisio, M., Uusitalo, M. A., Lundén, P., Wijting, C., Moya, F. S., Yaver, A., & Venkatasubramanian, V. Overview on initial METIS D2D concept. In 1st International Conference on 5G for Ubiquitous Connectivity (pp. 203–208). https://doi.org/10.4108/icst.5gu.2014.258096.
Bagheri, H., Sartori, P., Desai, V., Classon, B., Al-Shalash, M., & Soong, A. (2015). Device-to-device proximity discovery for LTE systems. IEEE International Conference on Communication Workshop (ICCW), 2015, 591–595. https://doi.org/10.1109/ICCW.2015.7247245
Alkurd, R., Shubair, R. M., & Abualhaol, I. (2014). Survey on device-to-device communications: Challenges and design issues. In 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS) (pp. 361–364). https://doi.org/10.1109/NEWCAS.2014.6934057.
Safdar, G. A., Ur Rehman, M., & Chaudhry, M. A. R. (2022). Introduction to d2d communications. In Interference mitigation in device‐to‐device communications (pp. 1–12). Springer. https://doi.org/10.1002/9781119788829.ch1.
Yang, M. J., Lim, S. Y., Park, H. J., & Park, N. H. (2013). Solving the data overload: Device-to-device bearer control architecture for cellular data offloading. IEEE Vehicular Technology Magazine, 8(1), 31–39. https://doi.org/10.1109/MVT.2012.2234052
Noura, M., & Nordin, R. (2016). A survey on interference management for device-to-device (D2D) communication and its challenges in 5G networks. Journal of Network and Computer Applications, 71, 130–150. https://doi.org/10.1016/j.jnca.2016.04.021
Raghothaman, B., Deng, E., Pragada, R., Sternberg, G., Deng, T., & Vanganuru, K. (2013). Architecture and protocols for LTE-based device to device communication. In 2013 International Conference on Computing, Networking and Communications (ICNC) (pp. 895–899). https://doi.org/10.1109/ICCNC.2013.6504208.
Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52(5), 86–92. https://doi.org/10.1109/MCOM.2014.6815897
Zhou, K., Gui, J., & Xiong, N. (2017). Improving cellular downlink throughput by multi-hop relay-assisted outband D2D communications. J Wireless Com Network. https://doi.org/10.1186/s13638-017-0998-9
Rêgo, M. G. d. S., Maciel, T. F., Barros, H. d. H. M., Cavalcanti, F. R. P., & Fodor, G. (2012). Performance analysis of power control for device-to-device communication in cellular MIMO systems. In 2012 International Symposium on Wireless Communication Systems (ISWCS) (pp. 336–340). https://doi.org/10.1109/ISWCS.2012.6328385.
Xing, H., & Hakola, S. (2010). The investigation of power control schemes for a device-to-device communication integrated into OFDMA cellular system. In 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1775–1780) https://doi.org/10.1109/PIMRC.2010.5671643.
Cheng, X., Li, Y., Ai, B., Yin, X., & Wang, Q. (2015). Device-to-device channel measurements and models: A survey. IET communications, 9(3), 312–325. https://doi.org/10.1049/iet-com.2014.0442
Kim, K.-W., & Oh, S.-J. (2014). An efficient implementation of the ITU-R channel model for device-to-device simulation. IEEE Communications Letters, 18(9), 1633–1636. https://doi.org/10.1109/LCOMM.2014.2344053
Peng, M., Li, Y., Quek, T. Q. S., & Wang, C. (2014). Device-to-device underlaid cellular networks under rician fading channels. IEEE Transactions on Wireless Communications, 13(8), 4247–4259. https://doi.org/10.1109/TWC.2014.2314115
Li, Y., Ai, B., Wang, Q., Zhong, Z., & Michelson, D. G. (2015). Three-dimensional modeling, simulation and evaluation of Device-to-Device channels. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015, 1808–1809. https://doi.org/10.1109/APS.2015.7305293
Feng, D., Lu, L., Yuan-Wu, Y., Li, G. Y., Li, S., & Feng, G. (2014). Device-to-device communications in cellular networks. IEEE Communications Magazine, 52(4), 49–55. https://doi.org/10.1109/MCOM.2014.6807946
Fodor, G., Dahlman, E., Mildh, G., Parkvall, S., Reider, N., Miklós, G., & Turányi, Z. (2012). Design aspects of network assisted device-to-device communications. IEEE Communications Magazine, 50(3), 170–177. https://doi.org/10.1109/MCOM.2012.6163598
Lei, L., Zhong, Z., Lin, C., & Shen, X. (2012). Operator controlled device-to-device communications in LTE-advanced networks. IEEE Wireless Communications, 19(3), 96–104. https://doi.org/10.1109/MWC.2012.6231164
Hong, J., Park, S., Kim, H., Choi, S., & Lee, K. B. (2013). Analysis of Device-to-Device discovery and link setup in LTE networks. In 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 2856–2860) https://doi.org/10.1109/PIMRC.2013.6666634.
Fodor, G., Parkvall, S., Sorrentino, S., Wallentin, P., Lu, Q., & Brahmi, N. (2014). Device-to-device communications for national security and public safety. IEEE Access, 2, 1510–1520. https://doi.org/10.1109/ACCESS.2014.2379938
Wang, M., & Yan, Z. (2017). A survey on security in D2D communications. Mobile Networks and Applications, 22(2), 195–208. https://doi.org/10.1007/s11036-016-0741-5
Gandotra, P., Jha, R. K., & Jain, S. (2017). A survey on device-to-device (D2D) communication: Architecture and security issues. Journal of Network and Computer Applications, 78, 9–29. https://doi.org/10.1016/j.jnca.2016.11.002
Hamoud, O. N., Kenaza, T., & Challal, Y. (2018). Security in device-to-device communications: A survey. IET Networks, 7(1), 14–22. https://doi.org/10.1049/iet-net.2017.0119
Suraci, C., Pizzi, S., Garompolo, D., Araniti, G., Molinaro, A., & Iera, A. (2021). Trusted and secured D2D-aided communications in 5G networks. Ad Hoc Networks, 114, 1. https://doi.org/10.1016/j.adhoc.2020.102403
Chow, M. C., & Ma, M. (2022). Secure d2d in 5G cellular networks: architecture, requirements and solution. In Advances in Computing, Informatics, Networking and Cybersecurity. Lecture Notes in Networks and Systems (Vol. 289, pp. 583–616). Cham: Springer. https://doi.org/10.1007/978-3-030-87049-2_20.
Gaba, G. S., Kumar, G., Kim, T.-H., Monga, H., & Kumar, P. (2021). Secure device-to-device communications for 5g enabled internet of things applications. Computer Communications, 169, 114–128. https://doi.org/10.1016/j.comcom.2021.01.010
Saxena, N., Kumbhar, F. H., & Roy, A. (2020). Exploiting Social Relationships for Trustworthy D2D Relay in 5G Cellular Networks. IEEE Communications Magazine, 58(2), 48–53. https://doi.org/10.1109/MCOM.001.1900089
Basak, S., & Acharya, T. (2020). On energy efficient secure routing in multi-hop underlay D2D communications for IoT applications. Ad Hoc Networks, 108, 1. https://doi.org/10.1016/j.adhoc.2020.102275
Khoshafa, M. H., Ngatched, T. M. N., Ahmed, M. H., & Ibrahim, A. (2020). Improving physical layer security of cellular networks using full-duplex jamming relay-aided D2D communications. IEEE Access, 8, 53575–53586. https://doi.org/10.1109/ACCESS.2020.2979848
Wang, L., Tian, Y., Zhang, D., & Lu, Y. (2019). Constant-round authenticated and dynamic group key agreement protocol for D2D group communications. Information Sciences, 503, 61–71. https://doi.org/10.1016/j.ins.2019.06.067
Wang, M., Yan, Z., Song, B., & Atiquzzaman, M. (2019) AAKA-D2D: anonymous authentication and key agreement protocol in D2D communications. In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1356–1362). https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00248.
Chen, X., Zhao, Y., Li, Y., Chen, X., Ge, N., & Chen, S. (2018). Social trust aided D2D communications: Performance bound and implementation mechanism. IEEE Journal on Selected Areas in Communications, 36(7), 1593–1608. https://doi.org/10.1109/JSAC.2018.2825658
Cao, M., Chen, D., Yuan, Z., Qin, Z., & Lou, C. (2018). A lightweight key distribution scheme for secure D2D communication. International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT), 2018, 1–8. https://doi.org/10.1109/MoWNet.2018.8428890
Zhang, A., Wang, L., Ye, X., & Lin, X. (2017). Light-weight and robust security-aware D2D-assist data transmission protocol for mobile-health systems. IEEE Transactions on Information Forensics and Security, 12(3), 662–675. https://doi.org/10.1109/TIFS.2016.2631950
Liu, Y., Wang, L., Raza Zaidi, S. A., Elkashlan, M., & Duong, T. Q. (2016). Secure D2D communication in large-scale cognitive cellular networks: A wireless power transfer model. IEEE Transactions on Communications, 64(1), 329–342. https://doi.org/10.1109/TCOMM.2015.2498171
Zhang, A., Chen, J., Hu, R. Q., & Qian, Y. (2016). SeDS: Secure data sharing strategy for D2D communication in LTE-Advanced networks. IEEE Transactions on Vehicular Technology, 65(4), 2659–2672. https://doi.org/10.1109/TVT.2015.2416002
Ometov, A., Orsino, A., Militano, L., Araniti, G., Moltchanov, D., & Andreev, S. (2016). A novel security-centric framework for D2D connectivity based on spatial and social proximity. Computer Networks, 107, 327–338. https://doi.org/10.1016/j.comnet.2016.03.013
Zhang, R., Cheng, X., & Yang, L. (2015). Cooperation via spectrum sharing for physical layer security in device-to-device communications underlaying cellular networks. IEEE Global Communications Conference (GLOBECOM), 2015, 1–6. https://doi.org/10.1109/GLOCOM.2015.7417724
Jayasinghe, K., Jayasinghe, P., Rajatheva, N., & Latva-aho, M. (2015). Physical layer security for relay assisted MIMO D2D communication. IEEE International Conference on Communication Workshop (ICCW), 2015, 651–656. https://doi.org/10.1109/ICCW.2015.7247255
Shen, W., Hong, W., Cao, X., Yin, B., Shila, D. M., & Cheng, Y. (2014). Secure key establishment for Device-to-Device communications. IEEE Global Communications Conference, 2014, 336–340. https://doi.org/10.1109/GLOCOM.2014.7036830
Zhang, H., Wang, T., Song, L., & Han, Z. (2014). Radio resource allocation for physical-layer security in D2D underlay communications. IEEE International Conference on Communications (ICC), 2014, 2319–2324. https://doi.org/10.1109/ICC.2014.6883669
Yue, J., Ma, C., Yu, H., Yang, Z., & Gan, X. (2013). Secrecy-based channel assignment for device-to-device communication: An auction approach. International Conference on Wireless Communications and Signal Processing, 1, 1–6. https://doi.org/10.1109/WCSP.2013.6677244
Hussein, A., El-Rabaie, S., & El-Mashed, M. G. (2021). Proactive discovery protocol with security enhancement for D2D communication system. Multimed Tools Appl, 80, 5047–5066. https://doi.org/10.1007/s11042-020-09799-1
Lopes, A. P. G., & Gondim, P. R. L. (2020). Group authentication protocol based on aggregated signatures for D2D communication. Computer Networks, 178, 1. https://doi.org/10.1016/j.comnet.2020.107192
Abro, A., Deng, Z., & Memon, K. A. (2019). A lightweight elliptic-Elgamal-based authentication scheme for secure device-to-device communication. Future Internet, 11(5), 1. https://doi.org/10.3390/fi11050108
Tan, H., Song, Y., Xuan, S., Pan, S., & Chung, I. (2019). Secure D2D group authentication employing smartphone sensor behavior analysis. Symmetry, 11(8), 1. https://doi.org/10.3390/sym11080969
Sun, Y., Cao, J., Ma, M., Li, H., Niu, B., & Li, F. (2019). Privacy-preserving device discovery and authentication scheme for D2D communication in 3GPP 5G HetNet. In International Conference on Computing, Networking and Communications (ICNC) (pp. 425–431). https://doi.org/10.1109/ICCNC.2019.8685499.
Cao, J., Ma, M., Li, H., Ma, R., Sun, Y., Yu, P., & Xiong, L. (2020). A survey on security aspects for 3GPP 5G networks. IEEE Communications Surveys & Tutorials, 22(1), 170–195. https://doi.org/10.1109/COMST.2019.2951818
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflicts of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Availability of data
All data generated or analyzed during this study are included in this article.
Code availability
No code is used to this study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Khan, A., Das, R. Security aspects of device-to-device (D2D) networks in wireless communication: a comprehensive survey. Telecommun Syst 81, 625–642 (2022). https://doi.org/10.1007/s11235-022-00954-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-022-00954-7