Skip to main content

Advertisement

Log in

Performance analysis and optimization of a hybrid TSR–PSR protocol for AF, DF and hybrid AF–DF relaying under Weibull fading

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, a generalized Interference-aided radio frequency energy harvesting (EH) cooperative network has been presented under Weibull faded environment. The performance analysis of the system in terms of Throughput and Outage Probability for various cooperation protocols, Decode-and-Forward, Amplify-and-Forward and Hybrid-Decode-Amplify-Forward has been shown. The throughput of the network has been optimized with respect to the EH fractions of the hybrid TSR–PSR protocol. Integral-form expressions for Outage probability and Throughput are derived for the given protocols. In addition, the throughput of the proposed network has been evaluated under different channel conditions which show the superiority of different EH fractions in different relays. Analytical expressions have been well substantiated through extensive simulation results. The influence of system parameters such as time switching and power splitting fractions, number of relay nodes, channel parameters on outage probability and throughput performance of the proposed network has been shown. Finally, the throughput of the proposed model has been compared with various benchmark techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  2. Ji, B., Li, Y., Zhou, B., Li, C., Song, K., & Wen, H. (2019). Performance analysis of UAV relay assisted IoT communication network enhanced with energy harvesting. IEEE Access, 7, 38738–38747.

    Article  Google Scholar 

  3. Majhi, S., Qian, H., Xiang, W., Addepalli, S., & Gao, Z. (2011). Analysis of outage probability for opportunistic decode-and-forward relaying network over asymmetric fading channels. In 2011 third international conference on ubiquitous and future networks (ICUFN) (pp. 135–139). IEEE.

  4. Yang, H., Smulders, P. F., & Herben, M. H. (2007). Channel characteristics and transmission performance for various channel configurations at 60 GHz. EURASIP Journal on Wireless Communications and Networking, 2007, 1–15.

    Article  Google Scholar 

  5. Reig, J., Martínez-Inglés, M. T., Rubio, L., Rodrigo-Penarrocha, V. M., & Molina-García-Pardo, J. M. (2014). Fading evaluation in the 60 GHz band in line-of-sight conditions. International Journal of Antennas and Propagation, 2014, 1–12.

    Google Scholar 

  6. Rauniyar, A., Engelstad, P., & Østerbø, O. N. (2018). RF energy harvesting and information transmission based on NOMA for wireless powered IoT relay systems. Sensors, 18(10), 3254.

    Article  Google Scholar 

  7. Tin, P. T., Dinh, B. H., Nguyen, T. N., Ha, D. H., & Trang, T. T. (2020). Power beacon-assisted energy harvesting wireless physical layer cooperative relaying networks: Performance analysis. Symmetry, 12(1), 106.

    Article  Google Scholar 

  8. Tran, P. T., Nguyen, T. N., & Voznak, M. (2018). Performance analysis of general hybrid TSR–PSR energy harvesting protocol for amplify-and-forward half-duplex relaying networks. Journal of Advanced Engineering and Computation, 2(2), 121–130.

    Article  Google Scholar 

  9. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2015). Wireless-powered relays in cooperative communications: Time-switching relaying protocols and throughput analysis. IEEE Transactions on Communications, 63(5), 1607–1622.

    Article  Google Scholar 

  10. Le, Q. N., Do, D. T., & An, B. (2017). Secure wireless powered relaying networks: Energy harvesting policies and performance analysis. International Journal of Communication Systems, 30(18), e3369.

    Article  Google Scholar 

  11. Babaei, M., Aygölü, Ü., & Basar, E. (2018). BER analysis of dual-hop relaying with energy harvesting in nakagami-m fading channel. IEEE Transactions on Wireless Communications, 17(7), 4352–4361.

    Article  Google Scholar 

  12. Krikidis, I., Suraweera, H. A., & Yuen, C. (2012). Amplify-and-forward with full-duplex relay selection. In 2012 IEEE international conference on communications (ICC) (pp. 3532–3537). IEEE.

  13. Li, S., Yang, K., Zhou, M., Wu, J., Song, L., Li, Y., & Li, H. (2017). Full-duplex amplify-and-forward relaying: Power and location optimization. IEEE Transactions on Vehicular Technology, 66(9), 8458–8468.

    Article  Google Scholar 

  14. Liu, Y., Ye, Y., Ding, H., Shen, J., & Yang, H. (2019). Performance analysis in df based cooperative swipt networks with direct link. arXiv:1902.10403

  15. Gu, Y., & Aissa, S. (2015). RF-based energy harvesting in decode-and-forward relaying systems: Ergodic and outage capacities. IEEE Transactions on Wireless Communications, 14(11), 6425–6434.

    Article  Google Scholar 

  16. Nguyen, T. N., Tran, M., Nguyen, T. L., Ha, D. H., & Voznak, M. (2019). Performance analysis of a user selection protocol in cooperative networks with power splitting protocol-based energy harvesting over Nakagami-m/Rayleigh channels. Electronics, 8(4), 448.

    Article  Google Scholar 

  17. Cao, K., Ding, H., & Fan, Z. (2016). Wireless information and power transfer in interference-limited two-way relaying system. In 2016 IEEE/CIC international conference on communications in China (ICCC) (pp. 1–5). IEEE.

  18. Tin, P. T., Tran, M., & Trang, T. T. (2020). Exploiting direct link in EH based two-way DF half-duplex relaying network: Outage probability analysis. Bulletin of Electrical Engineering and Informatics, 9(1), 265–272.

    Article  Google Scholar 

  19. Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine, 54(5), 36–42.

    Article  Google Scholar 

  20. Pal, S., & Jindal, P. (2020). Secrecy performance analysis of hybrid AF–DF relaying under multi hop environment. Wireless Personal Communications, 111(3), 1741–1760.

    Article  Google Scholar 

  21. Huo, Y., Xu, M., Fan, X., & Jing, T. (2018). A novel secure relay selection strategy for energy-harvesting-enabled Internet of things. EURASIP Journal on Wireless Communications and Networking, 2018(1), 1–18.

    Article  Google Scholar 

  22. Nguyen, B. C., Le, X. H., & Nguyen, V. D. (2021). On the capacity of full-duplex AF/DF relay system with energy harvesting for vehicle-to-vehicle communications. Wireless Communications and Mobile Computing, 2021, 1–11.

    Google Scholar 

  23. Asshad, M., Khan, S. A., Kavak, A., Küçük, K., & Msongaleli, D. L. (2019). Cooperative communications using relay nodes for next-generation wireless networks with optimal selection techniques: A review. IEEJ Transactions on Electrical and Electronic Engineering, 14(5), 658–669.

    Article  Google Scholar 

  24. Andrawes, A., Nordin, R., & Ismail, M. (2019). Wireless energy harvesting with cooperative relaying under the best relay selection scheme. Energies, 12(5), 892.

    Article  Google Scholar 

  25. Nguyen, B. C., Hoang, T. M., Pham, X. N., & Tran, P. T. (2019). Performance analysis of energy harvesting-based full-duplex decode-and-forward vehicle-to-vehicle relay networks with nonorthogonal multiple access. Wireless Communications and Mobile Computing, 2019, 1–11.

    Article  Google Scholar 

  26. Nguyen, T. N., Minh, T. H. Q., Tran, P. T., Voznak, M., Duy, T. T., Nguyen, T. L., & Tin, P. T. (2019). Performance enhancement for energy harvesting based two-way relay protocols in wireless ad-hoc networks with partial and full relay selection methods. Ad hoc Networks, 84, 178–187.

    Article  Google Scholar 

  27. Hoang An, N., Tran, M., Nguyen, T. N., & Ha, D. H. (2020). Physical layer security in a hybrid TPSR two-way half-duplex relaying network over a Rayleigh fading channel: Outage and intercept probability analysis. Electronics, 9(3), 428.

    Article  Google Scholar 

  28. Chen, H., Zhai, C., Li, Y., & Vucetic, B. (2018). Cooperative strategies for wireless-powered communications: An overview. IEEE Wireless Communications, 25(4), 112–119.

    Article  Google Scholar 

  29. Ojo, F. K., & Salleh, M. F. M. (2018). Throughput analysis of a hybridized power-time splitting based relaying protocol for wireless information and power transfer in cooperative networks. IEEE Access, 6, 24137–24147.

    Article  Google Scholar 

  30. Anh, P. V. T., Bao, V. N. Q., & Le, K. N. (2018). Performance of TAS/MRC wireless energy harvesting relaying networks over Rician fading channels. Wireless Personal Communications, 103(2), 1859–1870.

    Article  Google Scholar 

  31. Biswas, S., Bepari, D., & Mondal, S. (2020). Relay selection and performance analysis of wireless energy harvesting networks. Wireless Personal Communications, 114(4), 3157–3171.

    Article  Google Scholar 

  32. Zhai, C., Yu, Z., & Wang, X. (2019). High-efficient cooperative relaying with wireless powered source and relay. Computer Networks, 152, 199–209.

    Article  Google Scholar 

  33. Huang, G., & Tu, W. (2019). A high-throughput wireless-powered relay network with joint time and power allocations. Computer Networks, 160, 65–76.

    Article  Google Scholar 

  34. Shi, L., Ye, Y., Hu, R. Q., & Zhang, H. (2019). System outage performance for three-step two-way energy harvesting DF relaying. IEEE Transactions on Vehicular Technology, 68(4), 3600–3612.

    Article  Google Scholar 

  35. Nguyen, T. N., Tran Tin, P., Ha, D. H., Voznak, M., Tran, P. T., Tran, M., & Nguyen, T. L. (2018). Hybrid TSR–PSR alternate energy harvesting relay network over rician fading channels: Outage probability and SER analysis. Sensors, 18(11), 3839.

    Article  Google Scholar 

  36. Do, D. T., Le, A. T., & Lee, B. M. (2019). On performance analysis of underlay cognitive radio-aware hybrid OMA/NOMA networks with imperfect CSI. Electronics, 8(7), 819.

    Article  Google Scholar 

  37. Do, D. T., Le, A. T., Le, C. B., & Lee, B. M. (2019). On exact outage and throughput performance of cognitive radio based non-orthogonal multiple access networks with and without D2D link. Sensors, 19(15), 3314.

    Article  Google Scholar 

  38. Do, D. T., Nguyen, T. L., Rabie, K. M., Li, X., & Lee, B. M. (2020). Throughput analysis of multipair two-way replaying networks with NOMA and imperfect CSI. IEEE Access, 8, 128942–128953.

    Article  Google Scholar 

  39. Babich, F., & Lombardi, G. (2000). Statistical analysis and characterization of the indoor propagation channel. IEEE Transactions on Communications, 48(3), 455–464.

    Article  Google Scholar 

  40. Tzeremes, G., & Christodoulou, C. G. (2002). Use of Weibull distribution for describing outdoor multipath fading. In IEEE antennas and propagation society international symposium (IEEE Cat. No. 02CH37313) (Vol. 1, pp. 232–235). IEEE.

  41. Do, N. T., Bao, V. N. Q., & An, B. (2016). Outage performance analysis of relay selection schemes in wireless energy harvesting cooperative networks over non-identical rayleigh fading channels. Sensors, 16(3), 295.

    Article  Google Scholar 

  42. Singh, S., Mitra, D., & Baghel, R. K. (2021). Performance evaluation of relay assisted wireless powered network over fluctuating two ray fading channel with diversity reception. Wireless Personal Communications, 121(3), 1739–1755.

    Article  Google Scholar 

Download references

Funding

This research work was supported by the Department of Science & Technology and Biotechnology, West Bengal Govt. of India (Sanction Order no. 1373 (Sanc.)/STBT-11012(16)/29/2021-ST SEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Sur Chowdhury.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: A

1.1 A.1 Outage probability for DF protocol

For deriving the outage probability for DF protocol, the SINR of DF is put into the expression of outage probability.

By using Eqs. (7)–(11), the resultant expression of outage probability for \({j}{\text{th}}\) relay is obtained which is shown in Eq. (48).

$$ \begin{aligned} P_{outj} & = 1 - \Pr \left( {P_{j} \left| {h_{j} } \right|^{2} > \gamma_{th} ,Q_{j} \left( {\left| {h_{j} } \right|^{2} + U_{j} } \right)\left| {g_{j} } \right|^{2} > \gamma_{th} } \right) \\ & = 1 - \Pr \left( {\left| {h_{j} } \right|^{2} > \frac{{\gamma_{th} }}{{P_{j} }} ,\left| {g_{j} } \right|^{2} > \frac{{\gamma_{th} }}{{Q_{j} \left( {\left| {h_{j} } \right|^{2} + U_{j} } \right)}}} \right) \\ & = 1 - \mathop \int \limits_{{\frac{{\gamma_{th} }}{{P_{j} }}}}^{\infty } f_{{\left| {h_{j} } \right|^{2} }} \left( z \right)\left[ {{\text{Pr}}(\left| {g_{j} } \right|^{2} > \frac{{\gamma_{th} }}{{Q_{j} \left( {z_{j} + U_{j} } \right)}})} \right]dz \\ & = 1 - \mathop \int \limits_{{\frac{{\gamma_{th} }}{{P_{j} }}}}^{\infty } f_{{\left| {h_{j} } \right|^{2} }} \left( z \right)\left[ {1 - {\text{Pr}}\left( {\left| {g_{j} } \right|^{2} \le \frac{{\gamma_{th} }}{{Q_{j} \left( {z_{j} + U_{j} } \right)}}} \right)} \right]dz \\ \end{aligned} $$
(48)

Putting the p.d.f. and c.d.f. of the Weibull distribution Eq. (49) is obtained.

$$ P_{outj} = 1 - \frac{{K_{hj} }}{{\lambda_{hj}^{{k_{hj} }} }}\mathop \int \limits_{{\frac{{\gamma_{th} }}{{P_{j} }}}}^{\infty } z_{j}^{{k_{hj} - 1}} e^{{ - \left\{ {\left( {\frac{{z_{j} }}{{\lambda_{hj} }}} \right)^{{k_{hj} }} + \left( {\frac{{\gamma_{th} }}{{Q_{j} \lambda_{gj} \left( {z_{j} + U_{j} } \right)}}} \right)^{{k_{gj} }} } \right\}}} dz_{j} $$
(49)

Substitution of \( p_{j} = \left( {z_{j} /\lambda _{{hj}} } \right)^{{k_{{hj}} }} \) into Eq. (50) can be derived.

$${P}_{outj}=1-{\int }_{{\left(\frac{{\gamma }_{th}}{{P}_{j}{\lambda }_{hj}}\right)}^{{k}_{hj}}}^{\infty}{ e}^{-\left\{{p}_{j}+{\left(\frac{{\gamma }_{th}}{{Q}_{j}{\lambda }_{gj}{\lambda }_{hj}}.\frac{1}{\left({{p}_{j}}^{\frac{1}{{k}_{hj}}}+\frac{{U}_{j}}{{\lambda }_{hj}}\right)}\right)}^{{k}_{gj}}\right\}}d{p}_{j}$$
(50)

Now, using the Eqs. (6), (8), (11) and (33)–(35), the Eqs. (51)–(53) are formulated.

$$\frac{{\gamma }_{th}}{{P}_{j}{\lambda }_{hj}}=\frac{{\gamma }_{th}\left((1-{\rho }_{j}){I}_{Rj}+{\sigma }_{Rj}^{2}\right)}{{{L}_{1j}}^{2}{ P}_{s}.(1-{\rho }_{j}){\lambda }_{hj}}={M}_{j}$$
(51)
$$\frac{{\gamma }_{th}}{{Q}_{j}{\lambda }_{gj}{\lambda }_{hj}}=\frac{{\gamma }_{th}\left({I}_{D}+{\sigma }_{D}^{2}\right)(1-{\alpha }_{j}-{\beta }_{j})}{{\lambda }_{hj}{\lambda }_{gj}({{\eta }_{Tj}\alpha }_{j}+{\eta }_{Pj}{\rho }_{j}{\beta }_{j}){{L}_{1j}}^{2}{{L}_{2j}}^{2}{ P}_{s}}=N_{j}$$
(52)
$$\frac{{U}_{j}}{{\lambda }_{hj}}=\frac{{I}_{Rj}}{{L}_{1j}^{2}{P}_{s }{\lambda }_{hj}}={X}_{j}$$
(53)

Equations (50)–(53) lead to Eq. (54).

$${P}_{outj}=1-{\int }_{{{M}_{j}}^{{k}_{hj}}}^{\infty}{e}^{-\left\{{p}_{j}+{\left(\frac{{N}_{j}}{\left({{p}_{j}}^{\frac{1}{{k}_{hj}}}+ {X}_{j}\right)}\right)}^{{k}_{gj}}\right\}}d{p}_{j}$$
(54)

Equation (54) shows the outage probability of \({j}{\text{th}}\) relay in DF protocol.

1.2 A.2: Outage probability for AF protocol

For deriving the outage probability for DF protocol, the SINR of DF is put into the expression of outage probability. The alternative expression of outage probability for \({j}{\text{th}}\) relay is shown in Eq. (55).

$${P}_{outj}=\mathrm{Pr}\left({\gamma }_{SRj}\le {\gamma }_{th}\right)+\mathrm{Pr}\left({\gamma }_{SRj}>{\gamma }_{th} ,{ \gamma }_{RDj}\le {\gamma }_{th}\right)$$
(55)

Putting the Eq. (7) in \(\mathrm{Pr}\left({\gamma }_{SRj}\le {\gamma }_{thj}\right)\) Eq. (56) is obtained.

$$ \begin{aligned} \Pr \left( {\gamma_{SRj} \le \gamma_{th} } \right) & = \Pr \left( {\frac{{\left( {1 - \rho_{j} } \right)P_{s} }}{{L_{1j}^{2} \left( {\sigma_{jR}^{2} + \left( {1 - \rho_{j} } \right)I_{jR} } \right)}}|h_{j} |^{2} \le \gamma_{th} } \right) \\ & = {\text{Pr}}\left( {|h_{j} |^{2} \le \gamma_{th} .\frac{{L_{1j}^{2} \left[ {\left( {1 - \rho_{j} } \right)\sigma_{jR}^{2} + I_{jR} } \right]}}{{\left( {1 - \rho_{j} } \right)P_{s} }} } \right) \\ \end{aligned} $$
(56)

The constants in Eqs. (19)–(22) are modified into Eqs. (57)–(60).

$$c=c{^{\prime}}{\gamma }_{th}$$
(57)
$$d=d{^{\prime}}{\gamma }_{th}$$
(58)
$$e=e{^{\prime}}{\gamma }_{th}$$
(59)
$$f=f{^{\prime}}{\gamma }_{th}$$
(60)

Therefore, Eq. (61) is obtained.

$$ \Pr \left( {\gamma _{{SRj}} \le \gamma _{{th}} } \right) = \Pr \left( {|h_{j} |^{2} \le \frac{d}{a}} \right) = \mathop {\mathop \int \limits^{{\frac{d}{a}}} }\limits_{{z = 0}} f_{{\left| {h_{j} } \right|^{2} }} \left( z \right)dz $$
(61)

The Eq. (62) shows the expression for \(\mathrm{Pr}\left({\gamma }_{SRj}>{\gamma }_{th},{ \gamma }_{RDj}\le {\gamma }_{th}\right)\).

$$ \begin{aligned} & \Pr \left( {\gamma_{SRj} > \gamma_{th} , \gamma_{RDj} \le \gamma_{th} } \right) \\ & = \Pr \left( \frac{{\left({1 - \rho_{j} } \right)P_{s} }}{{L_{1j}^{2} \left[ {\sigma_{jR}^{2} + \left( {1 - \rho_{j} } \right)I_{jR} } \right]}}|h_{j} |^{2}\right.\\ &> \left.\gamma_{th} , \frac{{a\left| {g_{j} } \right|^{2} |h_{j} |^{4} + b\left| {g_{j} } \right|^{2} |h_{j} |^{2} }}{{c^{\prime}|h_{j} |^{2} + d^{^{\prime}} \left| {g_{j} } \right|^{2} |h_{j} |^{2} + e^{\prime}\left| {g_{j} } \right|^{2} + f^{\prime}}} \le \gamma_{th} \right) \\ & = \Pr \left(|h_{j} |^{2} > \gamma_{th} .\frac{{L_{1j}^{2} \left[ {\sigma_{jR}^{2} +\left( {1 - \rho_{j} } \right) I_{jR} } \right]}}{{\left( {1 - \rho_{j} } \right)P_{s} }},\left| {g_{j} } \right|^{2}\right.\\ &\quad \left.\left\{ {a|h_{j} |^{4} + b\left| {h_{j} } \right|^{2} - \gamma_{th} d^{\prime}|h_{j} |^{2} - \gamma_{th} e^{\prime}} \right\} \le \gamma_{th} \left( {c^{\prime} |h_{j} |^{2} + f^{\prime}} \right)\right) \\ & = \Pr \left(|h_{j} |^{2} > \frac{d}{a} ,\left| {g_{j} } \right|^{2} \left\{ {a|h_{j} |^{4} + b\left| {h_{j} } \right|^{2} - d|h_{j} |^{2} - e} \right\}\right.\\ &\le \left.\left( {c |h_{j} |^{2} + f} \right) \right) \\ \end{aligned} $$
(62)

From Eqs. (17), (18), (20), (21), (58), (59), \(\frac{b}{a}=\frac{e{^{\prime}}}{d{^{\prime}}}=\frac{e}{d}\). Thus,

$$\left\{a{{|h}_{j}|}^{4}+b{\left|{h}_{j}\right|}^{2}-d{{|h}_{j}|}^{2}-e\right\}=a\left({{|h}_{j}|}^{2}-\frac{d}{a}\right)\left({{|h}_{j}|}^{2}+\frac{b}{a}\right)$$
(63)

If,\({{|h}_{j}|}^{2}>\frac{d}{a}\), then the right-hand side of the Eq. (63) will be positive. The Eq. (62) leads to Eq. (64).

$$ \begin{aligned} & \Pr \left( {\gamma_{SRj} > \gamma_{th} , \gamma_{RDj} \le \gamma_{th} } \right) \\ & = \Pr \left( {|h_{j} |^{2} > \frac{d}{a} ,\left| {g_{j} } \right|^{2} \le \frac{{\left( {c |h_{j} |^{2} + f} \right)}}{{a\left( {|h_{j} |^{2} - \frac{d}{a}} \right)\left( {|h_{j} |^{2} + \frac{b}{a}} \right)}}} \right) \\ & = \mathop \int \limits_{{z_{j} = \frac{d}{a}}}^{\infty } f_{{\left| {h_{j} } \right|^{2} }} \left( {z_{j} } \right)Pr\left( {\left| {g_{j} } \right|^{2} \le \frac{{cz_{j} + f}}{{a\left( {z_{j} - \frac{d}{a}} \right)\left( {z_{j} + \frac{b}{a}} \right)}}} \right)dz_{j} \\ \end{aligned} $$
(64)

By putting the p.d.f. and c.d.f. of Weibull distribution and using \(\Pr \left( {\gamma_{SRj} > \gamma_{th} , \gamma_{RDj} \le \gamma_{th} } \right)\) leads to:

$$ \begin{aligned} P_{outj} & = \mathop \int \limits_{{z_{j} = 0}}^{\frac{d}{a}} f_{{\left| {h_{j} } \right|^{2} }} \left( {z_{j} } \right)dz_{j} + \mathop \int \limits_{{z = \frac{d}{a}}}^{\infty } f_{{\left| {h_{j} } \right|^{2} }} \left( {z_{j} } \right)\left[ {1 - e^{{ - \left( {\frac{{cz_{j} + f}}{{a\left( {z_{j} - \frac{d}{a}} \right)\left( {z_{j} + \frac{b}{a}} \right)}}.\frac{1}{{\lambda_{gj} }}} \right)^{{k_{gj} }} }} } \right]dz_{j} \\ P_{outj} & = 1 - \mathop \int \limits_{{z_{j} = \frac{d}{a}}}^{\infty } f_{{\left| {h_{j} } \right|^{2} }} \left( {z_{j} } \right)e^{{ - \left( {\frac{{cz_{j} + f}}{{a\left( {z_{j} - \frac{d}{a}} \right)\left( {z_{j} + \frac{b}{a}} \right)}}.\frac{1}{{\lambda_{gj} }}} \right)^{{k_{gj} }} }} dz_{j} \\ P_{outj} & = 1 - \mathop \int \limits_{{z_{j} = \frac{d}{a}}}^{\infty } \frac{{k_{hj} }}{{\lambda_{hj} }}\left( {\frac{{z_{j} }}{{\lambda_{hj} }}} \right)^{{k_{hj} - 1}} e^{{ - \left( {{\raise0.7ex\hbox{${z_{j} }$} \!\mathord{\left/ {\vphantom {{z_{j} } {\lambda_{hj} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\lambda_{hj} }$}}} \right)^{{k_{hj} }} }} e^{{ - \left( {\frac{{cz_{j} + f}}{{a\left( {z_{j} - \frac{d}{a}} \right)\left( {z_{j} + \frac{b}{a}} \right)}}.\frac{1}{{\lambda_{gj} }}} \right)^{{k_{gj} }} }} dz_{j} \\ & = 1 - \frac{{k_{hj} }}{{\lambda_{hj}^{{k_{hj} }} }}\mathop \int \limits_{{z = \frac{d}{a}}}^{\infty } z_{j}^{{k_{hj} - 1}} e^{{ - \left\{ {\left( {{\raise0.7ex\hbox{${z_{j} }$} \!\mathord{\left/ {\vphantom {{z_{j} } {\lambda_{hj} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\lambda_{hj} }$}}} \right)^{{k_{hj} }} + \left( {\frac{{cz_{j} + f}}{{a\left( {z_{j} - \frac{d}{a}} \right)\left( {z_{j} + \frac{b}{a}} \right)}}.\frac{1}{{\lambda_{gj} }}} \right)^{{k_{gj} }} } \right\}}} dz_{j} \\ \end{aligned} $$
(65)

Now using \(c{z}_{j}+f=c\left({z}_{j}+\frac{f}{c}\right)=c({z}_{j}+\frac{d}{a{\gamma }_{th}})\) and \( p_{j} = \left( {z_{j} /\lambda _{{hj}} } \right)^{{k_{{hj}} }} \) Eq. (66) can be obtained.

$${P}_{outj}=1-{\int }_{{\left(\frac{d}{a{\lambda }_{hj}}\right)}^{{k}_{hj}}}^{\infty}{e}^{-\left\{{p}_{j}+{\left(\frac{({{p}_{j}}^{\frac{1}{{k}_{hj}}}+\frac{d}{a{\lambda }_{hj}{\gamma }_{th}})}{\left({{p}_{j}}^{\frac{1}{{k}_{hj}}}- \frac{d}{a{\lambda }_{hj}}\right)\left({{p}_{j}}^{\frac{1}{{k}_{hj}}}+ \frac{b}{a{\lambda }_{hj}}\right)}.\frac{c}{{a\lambda }_{gj}{\lambda }_{hj}}\right)}^{{k}_{gj}}\right\}}d{p}_{j}$$
(66)

Now, using the Eqs. (17)–(20), (33)–(35) and (57)–(58) the Eqs. (67)–(69) are formulated.

$$\frac{d}{a{\lambda }_{hj}}=\frac{{{L}_{1j}}^{2}{\gamma }_{th}\left((1-{\rho }_{j}){I}_{Rj}+{\sigma }_{Rj}^{2}\right)}{{ P}_{s}.(1-{\rho }_{j}){\lambda }_{hj}}={M}_{j}$$
(67)
$$\frac{c}{{a\lambda }_{gj}{\lambda }_{hj}}=\frac{{{L}_{1j}}^{2}{{L}_{2j}}^{2}{\gamma }_{th}\left({I}_{D}+{\sigma }_{D}^{2}\right)(1-{\alpha }_{j}-{\beta }_{j})}{{\lambda }_{hj}{\lambda }_{gj}({{\eta }_{Tj}\alpha }_{j}+{\eta }_{Pj}{\rho }_{j}{\beta }_{j}){ P}_{s}}={N}_{j}$$
(68)
$$\frac{b}{a{\lambda }_{hj}}=\frac{{{L}_{1j}}^{2}{I}_{Rj}}{{P}_{s }{\lambda }_{hj}}={X}_{j}$$
(69)

Equations (67)–(69) lead to Eq. (70).

$${P}_{outj}=1-{\int }_{{{M}_{j}}^{{k}_{hj}}}^{\infty}{e}^{-\left\{{p}_{j}+{\left(\frac{({{p}_{j}}^{\frac{1}{{k}_{hj}}}+\frac{{M}_{j}}{{\gamma }_{th}})}{\left({{p}_{j}}^{\frac{1}{{k}_{hj}}}-{M}_{j}\right)\left({{p}_{j}}^{\frac{1}{{k}_{hj}}}+ {X}_{j}\right)}.{N}_{j}\right)}^{{k}_{gj}}\right\}}d{p}_{j}$$
(70)

Equation (70) shows the outage probability of \({j}{\text{th}}\) relay in AF protocol.

Equations (54) and (70) are in very similar forms with the same constants. Therefore, the AF and DF in the proposed model can be analysed similarly.

Appendix B

2.1 B.1: Outage probability for hybrid AF–DF protocol

Outage probability for \({j}{\text{th}}\) relay for Hybrid AF–DF is given in Eq. (71).

$$ \begin{aligned} P_{outj} & = \underbrace {{\Pr \left( {\gamma_{SRj} \le \gamma_{th} ,\gamma_{SRj} \ge Th_{j} } \right) + \Pr \left( {\gamma_{SRj} > \gamma_{th} , \gamma_{RDj - DF} \le \gamma_{th} ,\gamma_{SRj} \ge Th_{j} } \right) + }}_{{{\text{DF}}\,{\text{component}}}} \\ & \underbrace {{\Pr \left( {\gamma_{SRj} \le \gamma_{th} ,\gamma_{SRj} < Th_{j} } \right) + \Pr \left( {\gamma_{SRj} > \gamma_{th} , \gamma_{RDj - AF} \le \gamma_{th} ,\gamma_{SRj} < Th_{j} } \right)}}_{{{\text{AF}}\,{\text{component}}}} \\ \end{aligned} $$
(71)

Let us define

$${\gamma }_{Hyj}=\frac{{Th}_{j}}{{\gamma }_{th}}.$$
(72)
  1. I.

    If \({\gamma }_{th}\ge {Th}_{j}\), i.e., \({\gamma }_{Hyj}\le 1\), we get Eqs. (73)–(76).

$$\mathrm{Pr}\left({\gamma }_{SRj}\le {\gamma }_{th},{\gamma }_{SRj}\ge {Th}_{j}\right)=\mathrm{Pr}\left({Th}_{j}\le {\gamma }_{SRj}\le {\gamma }_{thj}\right).$$
(73)
$$\mathrm{Pr}\left({\gamma }_{SRj}>{\gamma }_{th} ,{ \gamma }_{RDj-DF}\le {\gamma }_{th},{\gamma }_{SRj}\ge {Th}_{j}\right)=\mathrm{Pr}\left({\gamma }_{SRj}>{\gamma }_{th} ,{ \gamma }_{RDj-DF}\le {\gamma }_{thj}\right).$$
(74)
$$\mathrm{Pr}\left({\gamma }_{SRj}\le {\gamma }_{th},{\gamma }_{SRj}<{Th}_{j}\right)=\mathrm{Pr}\left({\gamma }_{SRj}<{Th}_{j}\right).$$
(75)
$$\mathrm{Pr}\left({\gamma }_{SRj}>{\gamma }_{th} ,{ \gamma }_{RDj-AF}\le {\gamma }_{th},{\gamma }_{SRj}<{Th}_{j}\right)=0.$$
(76)

Putting the values of Eqs. (73)–(76) into Eq. (71), outage probability can be written as Eq. (77).

$$ \begin{aligned} P_{outj} & = \Pr \left( {Th_{j} \le \gamma_{SRj} \le \gamma_{th} } \right) + \Pr \left( {\gamma_{SRj} < Th_{j} } \right)\\ &\quad + \Pr \left( {\gamma_{SRj} > \gamma_{th} , \gamma_{RDj - DF} \le \gamma_{th} } \right) \\ & = \Pr \left( {\gamma_{SRj} \le \gamma_{th} } \right) + \Pr \left( {\gamma_{SRj} > \gamma_{th} , \gamma_{RDj - DF} \le \gamma_{th} } \right) \\ & = P_{outj - DF} \\ \end{aligned} $$
(77)

So, if \({\gamma }_{th}\ge {Th}_{j}\) (\({\gamma }_{Hyj}\le 1\)), then the outage probability of the Hybrid AF–DF protocol is equal to the outage probability of the DF protocol.

  1. II.

    If \({\gamma }_{th}<{Th}_{j}\), i.e., \({\gamma }_{Hyj}>1\),

$$\mathrm{Pr}\left({\gamma }_{SRj}\le {\gamma }_{th},{\gamma }_{SRj}\ge {Th}_{j}\right)=0.$$
(78)
$$\mathrm{Pr}\left({\gamma }_{SRj}>{\gamma }_{th} ,{ \gamma }_{RDj-DF}\le {\gamma }_{th},{\gamma }_{SRj}\ge {Th}_{j}\right)=\mathrm{Pr}\left({\gamma }_{SRj}\ge {Th}_{j} ,{ \gamma }_{RDj-DF}\le {\gamma }_{th}\right).$$
(79)
$$\mathrm{Pr}\left({\gamma }_{SRj}\le {\gamma }_{th},{\gamma }_{SRj}<{Th}_{j}\right)=\mathrm{Pr}\left({\gamma }_{SRj}\le {\gamma }_{th}\right).$$
(80)
$$\mathrm{Pr}\left({\gamma }_{SRj}>{\gamma }_{th} ,{ \gamma }_{RDj-AF}\le {\gamma }_{th},{\gamma }_{SRj}<{Th}_{j}\right)=\mathrm{Pr}\left({\gamma }_{th }<{\gamma }_{SRj}<{Th}_{j},{ \gamma }_{RDj-AF}\le {\gamma }_{th}\right).$$
(81)

Putting the values of Eqs. (78)–(81) into Eq. (71), outage probability can be written as Eq. (82).

$$ \begin{aligned} P_{outj} & = \Pr \left( {\gamma_{SRj} \le \gamma_{th} } \right) + \Pr \left( {\gamma_{SRj} \ge Th_{j} , \gamma_{RDj - DF} \le \gamma_{th} } \right) \\ & \quad + \Pr \left( {\gamma_{th } < \gamma_{SRj} < Th_{j} , \gamma_{RDj - AF} \le \gamma_{th} } \right) \\ & = \Pr \left(\gamma_{SRj} \le \gamma_{th} \right) + \Pr \left( {\gamma_{SRj} > \gamma_{th} , \gamma_{RDj - AF} \le \gamma_{th} } \right) \\ & \quad + [\Pr \left( {\gamma_{SRj } \ge Th_{j} , \gamma_{RDj - DF} \le \gamma_{th} } \right)\\ &\quad - \Pr \left( {\gamma_{SRj} \ge Th_{j} , \gamma_{RDj - AF} \le \gamma_{th} } \right)] \\ & = P_{outj - AF} - [\Pr \left( {\gamma_{SRj } \ge Th_{j} , \gamma_{RDj - AF} \le \gamma_{th} } \right)\\ &\quad - \Pr \left( {\gamma_{SRj} \ge Th_{j} , \gamma_{RDj - DF} \le \gamma_{th} } \right)] \\ \end{aligned} $$
(82)
$$ \begin{aligned} & \Pr \left( {\gamma_{SRj } \ge Th_{j} , \gamma_{RDj - AF} \le \gamma_{th} } \right) \\ & = \Pr \left( {\gamma_{SRj } \ge \gamma_{th} .\frac{{Th_{j} }}{{\gamma_{th} }}, \gamma_{RDj - AF} \le \gamma_{th} } \right) \\ & = \Pr \left(|h_{j} |^{2} \ge \frac{d}{a}.\frac{{Th_{j} }}{{\gamma_{th} }} ,\left| {g_{j} } \right|^{2} \left\{ {a|h_{j} |^{4} + b\left| {h_{j} } \right|^{2} - d|h_{j} |^{2} - e} \right\}\right.\\ &\le \left.\left( {c |h_{j} |^{2} + f} \right)\right) \\ & = \Pr \left(|h_{j} |^{2} \ge \frac{d}{a}. \gamma_{Hyj} ,\left| {g_{j} } \right|^{2} \left\{ {a|h_{j} |^{4} + b\left| {h_{j} } \right|^{2} - d|h_{j} |^{2} - e} \right\}\right.\\ &\le \left.\left( {c |h_{j} |^{2} + f} \right)\right) \\ \end{aligned} $$
(83)

Equation (83) is similar to Eq. (62).

Now, as \({\gamma }_{Hyj}>1\), therefore \({{|h}_{j}|}^{2}\ge \frac{d}{a}. {\gamma }_{Hyj}>\frac{d}{a}\).

$$\mathrm{Pr}\left({\gamma }_{SRj }\ge {Th}_{j},{ \gamma }_{RDj-AF}\le {\gamma }_{th}\right)={\int }_{{z}_{j}={\gamma }_{Hyj}.\frac{d}{a}}^{\infty}{f}_{{\left|{h}_{j}\right|}^{2}}\left({z}_{j}\right)Pr\left({\left|{g}_{j}\right|}^{2}\le \frac{c{z}_{j}+f}{a\left({z}_{j}-\frac{d}{a}\right)\left({z}_{j}+\frac{b}{a}\right)}\right)d{z}_{j}$$
(84)

Equation (84) is similar to Eq. (67).

Putting the parameters of Weibull distribution in Eqs. (84), (85) is obtained.

$$ \begin{aligned} & {\text{Pr}}\left( {\gamma _{{SRj}} \ge Th_{j} ,\gamma _{{RDj - AF}} \le \gamma _{{th}} } \right)\\ &\quad = \mathop {\mathop \smallint \limits^{\infty } }\limits_{{z_{j} = \gamma _{{Hyj}} .\frac{d}{a}}} \frac{{k_{{hj}} }}{{\lambda _{{hj}} }}\left( {\frac{{z_{j} }}{{\lambda _{{hj}} }}} \right)^{{k_{{hj}} - 1}} \\ &\qquad e^{{ - \left( {z_{j} /\lambda _{{hj}} } \right)^{{k_{{hj}} }} }} \left[ {1 - e^{{ - \left( {\frac{{cz_{j} + f}}{{a\left( {z_{j} - \frac{d}{a}} \right)\left( {z_{j} + \frac{b}{a}} \right)}}.\frac{1}{{\lambda _{{gj}} }}} \right)^{{k_{{gj}} }} }} } \right]dz_{j} \\ \end{aligned} $$
(85)

Substituting \( p_{j} = \left( {{\raise0.7ex\hbox{${{\text{z}}_{{\text{j}}} }$} \!\mathord{\left/ {\vphantom {{{\text{z}}_{{\text{j}}} } {{{\lambda }}_{{{\text{hj}}}} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${{{\lambda }}_{{{\text{hj}}}} }$}}} \right)^{{{\text{k}}_{{{\text{hj}}}} }} \) in Eqs. (85), 86) is obtained.

$$\mathrm{Pr}\left({\gamma }_{SRj }\ge {Th}_{j},{ \gamma }_{RDj-AF}\le {\gamma }_{th}\right)$$
$$ \begin{aligned} & = \mathop \int \limits_{{\left( {\frac{d}{{a\lambda_{hj} }}.\gamma_{Hyj} } \right)^{{k_{hj} }} }}^{\infty } e^{{ - p_{j} }} dp_{j} - \mathop \int \limits_{{\left( {\frac{d}{{a\lambda_{hj} }}.\gamma_{Hyj} } \right)^{{k_{hj} }} }}^{\infty }\\ &\quad e^{{ - \left\{ {p_{j} + \left( {\frac{{\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} + \frac{d}{{a\lambda_{hj} \gamma_{th} }}} \right)}}{{\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} - \frac{d}{{a\lambda_{hj} }}} \right)\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} + \frac{b}{{a\lambda_{hj} }}} \right)}}.\frac{c}{{a\lambda_{gj} \lambda_{hj} }}} \right)^{{k_{gj} }} } \right\}}} dp_{j} \\ & = e^{{ - \left( {\frac{d}{{a\lambda_{hj} }}.\gamma_{Hyj} } \right)^{{k_{hj} }} }} - \mathop \int \limits_{{\left( {\frac{d}{{a\lambda_{hj} }}.\gamma_{Hyj} } \right)^{{k_{hj} }} }}^{\infty } \\ &\quad e^{{ - \left\{ {p_{j} + \left( {\frac{{\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} + \frac{d}{{a\lambda_{hj} \gamma_{th} }}} \right)}}{{\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} - \frac{d}{{a\lambda_{hj} }}} \right)\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} + \frac{b}{{a\lambda_{hj} }}} \right)}}.\frac{c}{{a\lambda_{gj} \lambda_{hj} }}} \right)^{{k_{gj} }} } \right\}}} dp_{j} \\ \end{aligned} $$
(86)

Using (67)–(69), Eq. (87) is obtained.

$$ \begin{aligned} & \Pr \left( {\gamma_{SRj } \ge Th_{j} , \gamma_{RDj - AF} \le \gamma_{th} } \right) \\ &\quad = e^{{ - \left( {\gamma_{Hyj} M_{j} } \right)^{{k_{hj} }} }} - \mathop \int \limits_{{(\gamma_{Hyj} M_{j} )^{{k_{hj} }} }}^{\infty }\\ &\qquad e^{{ - \left\{ {p_{j} + \left( {\frac{{\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} + \frac{{M_{j} }}{{\gamma_{th} }}} \right)}}{{\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} - M_{j} } \right)\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} + X_{j} } \right)}}.N_{j} } \right)^{{k_{gj} }} } \right\}}} dp_{j} \\ \end{aligned} $$
(87)
$$ \begin{aligned} & \Pr \left( {\gamma_{SRj } \ge Th_{j} , \gamma_{RDj - DF} \le \gamma_{th} } \right) \\ & = \Pr \left( {\gamma_{SRj } \ge \gamma_{th} .\frac{{Th_{j} }}{{\gamma_{th} }}, \gamma_{RDj - DF} \le \gamma_{th} } \right) \\ & = \Pr \left( {\left| {h_{j} } \right|^{2} > \frac{{\gamma_{th} }}{{P_{j} }}.\frac{{Th_{j} }}{{\gamma_{th} }} ,\left| {g_{j} } \right|^{2} \le \frac{{\gamma_{th} }}{{Q_{j} \left( {\left| {h_{j} } \right|^{2} + U_{j} } \right)}}} \right) \\ & = \mathop \int \limits_{{\gamma_{Hyj} .\frac{{\gamma_{th} }}{{P_{j} }}}}^{\infty } f_{{\left| {h_{j} } \right|^{2} }} \left( z \right){\text{Pr}}\left( {\left| {g_{j} } \right|^{2} \le \frac{{\gamma_{th} }}{{Q_{j} \left( {z_{j} + U_{j} } \right)}}} \right)dz \\ \end{aligned} $$
(88)

Equation (88) is similar to Eq. (48).

Putting the p.d.f. and c.d.f. of Weibull distribution Eq. (89) is obtained.

$$ \begin{aligned} & \Pr \left( {\gamma_{SRj } \ge Th_{j} , \gamma_{RDj - DF} \le \gamma_{th} } \right) \\ & = \frac{{K_{hj} }}{{\lambda_{hj}^{{k_{hj} }} }}\mathop \int \limits_{{\gamma_{Hyj} .\frac{{\gamma_{th} }}{{P_{j} }}}}^{\infty } z_{j}^{{k_{hj} - 1}} e^{{ - \left( {\frac{{z_{j} }}{{\lambda_{hj} }}} \right)^{{k_{hj} }} }} \left[ {1 - e^{{ - \left\{ {\left( {\frac{{\gamma_{th} }}{{Q_{j} \lambda_{gj} \left( {z_{j} + U_{j} } \right)}}} \right)^{{k_{gj} }} } \right\}}} } \right]dz_{j} \\ \end{aligned} $$
(89)

Substitution of \({p_j} = {\left( {{{\text{z}}_{\text{j}}}/{{{\lambda }}_{{\text{hj}}}}} \right)^{{{\text{k}}_{{\text{hj}}}}}}\) into Eq. (90) can be derived.

$$ \begin{aligned} & \Pr \left( {\gamma_{SRj } \ge Th_{j} , \gamma_{RDj - DF} \le \gamma_{th} } \right) \\ & = \mathop \int \limits_{{\left( {\gamma_{Hyj} .\frac{{\gamma_{th} }}{{P_{j} \lambda_{hj} }}} \right)^{{k_{hj} }} }}^{\infty } e^{{ - p_{j} }} dp_{j} - \mathop \int \limits_{{\left( {\gamma_{Hyj} .\frac{{\gamma_{th} }}{{P_{j} \lambda_{hj} }}} \right)^{{k_{hj} }} }}^{\infty } e^{{ - \left\{ {p_{j} + \left( {\frac{{\gamma_{th} }}{{Q_{j} \lambda_{gj} \left( {p_{j}^{{\frac{1}{{k_{hj} }}}} \lambda_{hj} + U_{j} } \right)}}} \right)^{{k_{gj} }} } \right\}}} dp_{j} \\ & = e^{{ - \left( {\gamma_{Hyj} .\frac{{\gamma_{th} }}{{P_{j} \lambda_{hj} }}} \right)^{{k_{hj} }} }} - \mathop \int \limits_{{\left( {\gamma_{Hyj} .\frac{{\gamma_{th} }}{{P_{j} \lambda_{hj} }}} \right)^{{k_{hj} }} }}^{\infty } e^{{ - \left\{ {p_{j} + \left( {\frac{{\gamma_{th} }}{{Q_{j} \lambda_{gj} \left( {p_{j}^{{\frac{1}{{k_{hj} }}}} \lambda_{hj} + U_{j} } \right)}}} \right)^{{k_{gj} }} } \right\}}} dp_{j} \\ \end{aligned} $$
(90)

Using the Eqs. (51) -(53), Eq. (91) is formulated.

$$ \begin{aligned} & \Pr \left( {\gamma_{SRj } \ge Th_{j} , \gamma_{RDj - DF} \le \gamma_{th} } \right) \\ & = e^{{ - \left( {\gamma_{Hyj} .M_{j} } \right)^{{k_{hj} }} }} - \mathop \int \limits_{{(\gamma_{Hyj} M_{j} )^{{k_{hj} }} }}^{\infty } e^{{ - \left\{ {p_{j} + \left( {\frac{{N_{j} }}{{\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} + X_{j} } \right)}}} \right)^{{k_{gj} }} } \right\}}} dp_{j} \\ \end{aligned} $$
(91)

Combining Eqs. (70), (87), (91) we get,

$$ P_{outj} = P_{outj - AF} - [\Pr \left( {\gamma_{SRj } \ge Th_{j} , \gamma_{RDj - AF} \le \gamma_{th} } \right) - \Pr \left( {\gamma_{SRj} \ge Th_{j} , \gamma_{RDj - DF} \le \gamma_{th} } \right)] $$
$$ \begin{aligned} & = \left[ {1 - \mathop {\mathop \smallint \limits^{\infty } }\limits_{{M_{j} ^{{k_{{hj}} }} }} e^{{ - \left\{ {p_{j} + \left( {\frac{{(p_{j} ^{{\frac{1}{{k_{{hj}} }}}} + \frac{{M_{j} }}{{\gamma _{{th}} }})}}{{\left( {p_{j} ^{{\frac{1}{{k_{{hj}} }}}} - M_{j} } \right)\left( {p_{j} ^{{\frac{1}{{k_{{hj}} }}}} + X_{j} } \right)}}.N_{j} } \right)^{{k_{{gj}} }} } \right\}}} dp_{j} } \right] \\ & \quad + \mathop {\mathop \smallint \limits^{\infty } }\limits_{{(\gamma _{{Hyj}} M_{j} )^{{k_{{hj}} }} }} e^{{ - \left\{ {p_{j} + \left( {\frac{{\left( {p_{j} ^{{\frac{1}{{k_{{hj}} }}}} + \frac{{M_{j} }}{{\gamma _{{th}} }}} \right)}}{{\left( {p_{j} ^{{\frac{1}{{k_{{hj}} }}}} - M_{j} } \right)\left( {p_{j} ^{{\frac{1}{{k_{{hj}} }}}} + X_{j} } \right)}}.N_{j} } \right)^{{k_{{gj}} }} } \right\}}} dp_{j} \\ & \quad - \mathop {\mathop \smallint \limits^{\infty } }\limits_{{(\gamma _{{Hyj}} M_{j} )^{{k_{{hj}} }} }} e^{{ - \left\{ {p_{j} + \left( {\frac{{N_{j} }}{{\left( {p_{j} ^{{\frac{1}{{k_{{hj}} }}}} + X_{j} } \right)}}} \right)^{{k_{{gj}} }} } \right\}}} dp_{j} \\ \end{aligned} $$
$$ \begin{aligned} & = 1 - \int\limits_{{M_{j}^{{k_{{hj}} }} }}^{{(\gamma _{{Hyj}} M_{j} )^{{k_{{hj}} }} }} {e^{{ - \left\{ {p_{j} + \left( {\frac{{\left( {p_{j}^{{\frac{1}{{k_{{hj}} }}}} + \frac{{M_{j} }}{{\gamma _{{th}} }}} \right)}}{{\left( {p_{j}^{{\frac{1}{{k_{{hj}} }}}} - M_{j} } \right)\left( {p_{j}^{{\frac{1}{{k_{{hj}} }}}} + X_{j} } \right)}}.N_{j} } \right)^{{k_{{gj}} }} } \right\}}} } dp_{j} \\ & \quad - \int\limits_{{(\gamma _{{Hyj}} M_{j} )^{{k_{{hj}} }} }}^{\infty } {e^{{ - \left\{ {p_{j} + \left( {\frac{{N_{j} }}{{\left( {p_{j}^{{\frac{1}{{k_{{hj}} }}}} + X_{j} } \right)}}} \right)^{{k_{{gj}} }} } \right\}}} } dp_{j} \\ \end{aligned} $$
(92)

Therefore if \({\gamma }_{Hyj}\le 1\) then,\({P}_{outj}={ P}_{outj-DF}\); else

$$ \begin{aligned} P_{outj} & = 1 - \mathop \int \limits_{{M_{j}^{{k_{hj} }} }}^{{(\gamma_{Hyj} M_{j} )^{{k_{hj} }} }} e^{{ - \left\{ {p_{j} + \left( {\frac{{\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} + \frac{{M_{j} }}{{\gamma_{th} }}} \right)}}{{\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} - M_{j} } \right)\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} + X_{j} } \right)}}.N_{j} } \right)^{{k_{gj} }} } \right\}}} dp_{j} \\ & \quad - \mathop \int \limits_{{(\gamma_{Hyj} M_{j} )^{{k_{hj} }} }}^{\infty } e^{{ - \left\{ {p_{j} + \left( {\frac{{N_{j} }}{{\left( {p_{j}^{{\frac{1}{{k_{hj} }}}} + X_{j} } \right)}}} \right)^{{k_{gj} }} } \right\}}} dp_{j} \\ \end{aligned} $$
(93)

From Eqs. (76) and (93), we can note that if \({\gamma }_{Hyj}\le 1\), then the system behaves like DF and when \({\gamma }_{Hyj}\) is sufficiently large, then the system approaches AF.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, R.S., Sadhu, J.K., Thakur, C. et al. Performance analysis and optimization of a hybrid TSR–PSR protocol for AF, DF and hybrid AF–DF relaying under Weibull fading. Telecommun Syst 82, 61–90 (2023). https://doi.org/10.1007/s11235-022-00967-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00967-2

Keywords

Navigation