Skip to main content

Advertisement

Log in

Joint trajectory and power design for UAV-enabled cooperative jamming in two-way secure communication

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper investigates a unmanned aerial vehicle (UAV)-aided two-way secure communication system, in which, two ground terminals receive and transmit confidential signals simultaneously, and UAV moves around to transmit jamming signals to confuse malicious eavesdropper. UAV and terminals have energy constraints, the location information of the legitimate terminals is known exactly while that of eavesdropper is known in part. We focus on maximizing a worst-case secrecy rate summation at the two ground terminals over all time slots. This optimization problem is solved by jointly designing the trajectory of UAV and the transmit power (ground terminals or UAV) under maximum UAV speed and transmit power constraints. Due to the non-convexity of the problem constructed by the complicated constraints, we divide the original optimization problem into four subproblems and develop an iterative algorithm to find its suboptimal solution by using the block coordinate descend and successive convex approximation techniques. Simulation results are provided to evaluate the performance of the proposed algorithm by comparing with conventional one-way design and other benchmark schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Khan, M. A., Ullah, I., Kumar, N., Oubbati, O. S., Qureshi, I. M., Noor, F., & Ullah Khanzada, F. (2021). An efficient and secure certificate-based access control and key agreement scheme for flying ad-hoc networks. IEEE Transactions on Vehicular Technology, 70(5), 4839–4851. https://doi.org/10.1109/TVT.2021.3055895

    Article  Google Scholar 

  2. Zhou, X., He, D., Khan, M. K., Wu, W., & Choo, K.-K.R. (2022). An efficient blockchain-based conditional privacy-preserving authentication protocol for vanets. IEEE Transactions on Vehicular Technology, 1, 12. https://doi.org/10.1109/TVT.2022.3204582

    Article  Google Scholar 

  3. He, D., Ma, M., Zeadally, S., Kumar, N., & Liang, K. (2018). Certificateless public key authenticated encryption with keyword search for industrial internet of things. IEEE Transactions on Industrial Informatics, 14(8), 3618–3627. https://doi.org/10.1109/TII.2017.2771382

    Article  Google Scholar 

  4. Shiu, Y.-S., Chang, S. Y., Wu, H.-C., Huang, S.C.-H., & Chen, H.-H. (2011). Physical layer security in wireless networks: a tutorial. IEEE Wireless Communications, 18(2), 66–74. https://doi.org/10.1109/MWC.2011.5751298

    Article  Google Scholar 

  5. Tashman, D. H., & Hamouda, W. (2021). An overview and future directions on physical-layer security for cognitive radio networks. IEEE Network, 35(3), 205–211. https://doi.org/10.1109/MNET.011.2000507

    Article  Google Scholar 

  6. Hu, T., Ma, F., Shang, Y., Cheng, Y.: Physical layer security of untrusted uav-enabled relaying noma network using swipt and the cooperative jamming. In: 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), pp. 1–6. https://doi.org/10.1109/VTC2021-Fall52928.2021.9625070

  7. Cumanan, K., Xing, H., Xu, P., Zheng, G., Dai, X., Nallanathan, A., Ding, Z., & Karagiannidis, G. K. (2017). Physical layer security jamming: Theoretical limits and practical designs in wireless networks. IEEE Access, 5, 3603–3611. https://doi.org/10.1109/ACCESS.2016.2636239

    Article  Google Scholar 

  8. Zappone, A., Lin, P.-H., & Jorswieck, E. A. (2019). Secrecy energy efficiency for mimo single- and multi-cell downlink transmission with confidential messages. IEEE Transactions on Information Forensics and Security, 14(8), 2059–2073. https://doi.org/10.1109/TIFS.2019.2891231

    Article  Google Scholar 

  9. Zhou, X., Rezki, Z., Alomair, B., & Alouini, M.-S. (2016). Achievable rates of secure transmission in gaussian miso channel with imperfect main channel estimation. IEEE Transactions on Wireless Communications, 15(6), 4470–4485. https://doi.org/10.1109/TWC.2016.2542128

    Article  Google Scholar 

  10. Li, X., Wang, W., Zhang, M., Zhou, F., & Al-Dhahir, N. (2020). Robust secure beamforming for swipt-aided relay systems with full-duplex receiver and imperfect csi. IEEE Transactions on Vehicular Technology, 69(2), 1867–1878. https://doi.org/10.1109/TVT.2019.2961449

    Article  Google Scholar 

  11. Tang, Z., Sun, L., Tian, X., Niyato, D., & Zhang, Y. (2022). Artificial-noise-aided coordinated secure transmission design in multi-cell multi-antenna networks with limited feedback. IEEE Transactions on Vehicular Technology, 71(2), 1750–1765. https://doi.org/10.1109/TVT.2021.3134758

    Article  Google Scholar 

  12. Zeng, Y., Xu, J., & Zhang, R. (2019). Energy minimization for wireless communication with rotary-wing uav. IEEE Transactions on Wireless Communications, 18(4), 2329–2345. https://doi.org/10.1109/TWC.2019.2902559

    Article  Google Scholar 

  13. Song, Q., Jin, S., & Zheng, F.-C. (2019). Completion time and energy consumption minimization for uav-enabled multicasting. IEEE Wireless Communications Letters, 8(3), 821–824. https://doi.org/10.1109/LWC.2019.2894684

    Article  Google Scholar 

  14. Gu, J., Wang, H., Ding, G., Xu, Y., Xue, Z., & Zhou, H. (2020). Energy-constrained completion time minimization in uav-enabled internet of things. IEEE Internet of Things Journal, 7(6), 5491–5503. https://doi.org/10.1109/JIOT.2020.2981092

    Article  Google Scholar 

  15. Zhong, C., Yao, J., & Xu, J. (2019). Secure uav communication with cooperative jamming and trajectory control. IEEE Communications Letters, 23(2), 286–289. https://doi.org/10.1109/LCOMM.2018.2889062

    Article  Google Scholar 

  16. Li, A., Wu, Q., & Zhang, R. (2019). Uav-enabled cooperative jamming for improving secrecy of ground wiretap channel. IEEE Wireless Communications Letters, 8(1), 181–184. https://doi.org/10.1109/LWC.2018.2865774

    Article  Google Scholar 

  17. Miao, J., & Zheng, Z. (2020). Cooperative jamming for secure uav-enabled mobile relay system. IEEE Access, 8, 48943–48957. https://doi.org/10.1109/ACCESS.2020.2980242

    Article  Google Scholar 

  18. Sun, X., Ng, D. W. K., Ding, Z., Xu, Y., & Zhong, Z. (2019). Physical layer security in uav systems: Challenges and opportunities. IEEE Wireless Communications, 26(5), 40–47. https://doi.org/10.1109/MWC.001.1900028

    Article  Google Scholar 

  19. Wang, H.-M., Zhang, X., & Jiang, J.-C. (2019). Uav-involved wireless physical-layer secure communications: Overview and research directions. IEEE Wireless Communications, 26(5), 32–39. https://doi.org/10.1109/MWC.001.1900045

    Article  Google Scholar 

  20. Wang, W., Li, X., Zhang, M., Cumanan, K., Ng, D. W. K., Zhang, G., Tang, J., & Dobre, O. A. (2020). Energy-constrained uav-assisted secure communications with position optimization and cooperative jamming. IEEE Transactions on Communications, 68(7), 4476–4489. https://doi.org/10.1109/TCOMM.2020.2989462

    Article  Google Scholar 

  21. Wang, Q., Dai, H. N., Wang, H., Xu, G., & Sangaiah, A. K. (2019). Uav-enabled friendly jamming scheme to secure industrial internet of things. Journal of Communications and Networks, 21(5), 481–490. https://doi.org/10.1109/JCN.2019.000042

    Article  Google Scholar 

  22. Wang, Z., Liu, R., Liu, Q., Han, L., & Mu, W. (2021). Controllable positioning service with uav-enabled cooperative jamming. IEEE Wireless Communications Letters, 10(9), 1929–1933. https://doi.org/10.1109/LWC.2021.3086524

    Article  Google Scholar 

  23. Duo, B., Hu, H., Li, Y., Yuan, X.: Joint trajectory and power design in probabilistic los channel for uav-enabled cooperative jamming. In: ICC 2021 - IEEE International Conference on Communications, pp. 1–6. https://doi.org/10.1109/ICC42927.2021.9500745

  24. Duo, B., Hu, H., Li, Y., Hu, Y., & Zhu, X. (2021). Robust 3d trajectory and power design in probabilistic los channel for uav-enabled cooperative jamming. Vehicular Communications, 32, 100387. https://doi.org/10.1016/j.vehcom.2021.100387

    Article  Google Scholar 

  25. Cui, M., Zhang, G., Wu, Q., & Ng, D. W. K. (2018). Robust trajectory and transmit power design for secure uav communications. IEEE Transactions on Vehicular Technology, 67(9), 9042–9046. https://doi.org/10.1109/TVT.2018.2849644

    Article  Google Scholar 

  26. Roh, Y., Jung, S., Kang, J.: Cooperative uav jammer for enhancing physical layer security: Robust design for jamming power and trajectory. In: MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM), pp. 464–469. https://doi.org/10.1109/MILCOM47813.2019.9021084

  27. Lee, H., Eom, S., Park, J., & Lee, I. (2018). Uav-aided secure communications with cooperative jamming. IEEE Transactions on Vehicular Technology, 67(10), 9385–9392. https://doi.org/10.1109/TVT.2018.2853723

    Article  Google Scholar 

  28. Wang, W., Li, X., Wang, R., Cumanan, K., Feng, W., Ding, Z., & Dobre, O. A. (2021). Robust 3d-trajectory and time switching optimization for dual-uav-enabled secure communications. IEEE Journal on Selected Areas in Communications, 39(11), 3334–3347. https://doi.org/10.1109/JSAC.2021.3088628

    Article  Google Scholar 

  29. Kim, M., Kim, S., & Lee, J. (2021). Securing communications with friendly unmanned aerial vehicle jammers. IEEE Transactions on Vehicular Technology, 70(2), 1972–1977. https://doi.org/10.1109/TVT.2021.3052503

    Article  Google Scholar 

  30. Zhang, G., Wu, Q., Cui, M., & Zhang, R. (2019). Securing uav communications via joint trajectory and power control. IEEE Transactions on Wireless Communications, 18(2), 1376–1389. https://doi.org/10.1109/TWC.2019.2892461

    Article  Google Scholar 

  31. Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming, version 2.2. http://cvxr.com/cvx (2020)

  32. Zhang, G., Xu, J., Wu, Q., Cui, M., Li, X., & Lin, F. (2018). Wireless powered cooperative jamming for secure ofdm system. IEEE Transactions on Vehicular Technology, 67(2), 1331–1346. https://doi.org/10.1109/TVT.2017.2756877

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwen Zhang.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cheng, R. Joint trajectory and power design for UAV-enabled cooperative jamming in two-way secure communication. Telecommun Syst 82, 487–498 (2023). https://doi.org/10.1007/s11235-023-00994-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-00994-7

Keywords

Navigation