Skip to main content
Log in

ReMAPP: reverse multilateration based access point positioning using multivariate regression for indoor localization in smart buildings

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Indoor localization has attracted significant demand in diverse smart building applications like automated energy management, patient tracking in hospitals, industrial indoor navigation, etc. Most of the proposals use Wi-Fi access points to construct indoor localization systems and in such systems, the fundamental task is to deploy access points correctly. The existing literature has employed additional access points or related hardware to improve localization accuracy, which in turn results in expensive installation and maintenance costs. Our objective is to optimize deployment by modifying the positions of already existing access points without using any additional hardware. To achieve this, we propose a reverse multilateration based access point positioning framework that has three phases: the first phase uses multivariate regression to predict the coordinates of the target location based on received signal strength indicator values collected from multiple access points; the second phase identifies the misplaced access points using the cumulative error by distance ratio; and the third phase computes the new positions of access points through reverse multilateration. Experiments show that the proposal generates 888 correct predictions out of 960 data points, thereby improving the prediction accuracy by 4.79% when compared with existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. De Cillis, F., et al. (2020). hybrid indoor positioning system for first responders. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(2), 468–479. https://doi.org/10.1109/TSMC.2017.2772821

    Article  Google Scholar 

  2. Zhao, Y., Xu, J., Wu, J., Hao, J., & Qian, H. (2020). Enhancing camera-based multimodal indoor localization with device-free movement measurement using WiFi. IEEE Internet of Things Journal, 7(2), 1024–1038. https://doi.org/10.1109/JIOT.2019.2948605

    Article  Google Scholar 

  3. Ding, H., Zheng, Z., & Zhang, Y. (2016). AP weighted multiple matching nearest neighbors approach for fingerprint-based indoor localization. In 2016 Fourth international conference on ubiquitous positioning, indoor navigation and location based services (UPINLBS) (pp. 218–222). https://doi.org/10.1109/UPINLBS.2016.7809974

  4. Pichaimani, V., & Varma, M. (2021). Positioning of WiFi devices for indoor floor planning using principal featured Kohonen deep structure. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02326-y

    Article  Google Scholar 

  5. Wen, K., Seow, C. K., & Tan, S. Y. (2020). An indoor localization and tracking system using successive weighted RSS projection. IEEE Antennas and Wireless Propagation Letters, 19(9), 1620–1624. https://doi.org/10.1109/LAWP.2020.3011993

    Article  Google Scholar 

  6. Shang, F., Su, W., Wang, Q., Gao, H., & Fu, Q. (2014). A location estimation algorithm based on rssi vector similarity degree. International Journal of Distributed Sensor Networks. https://doi.org/10.1155/2014/371350

    Article  Google Scholar 

  7. Dinh, T.-M.T., Duong, N.-S., & Sandrasegaran, K. (2020). Smartphone-based indoor positioning using BLE iBeacon and reliable lightweight fingerprint map. IEEE Sensors Journal, 20(17), 10283–10294. https://doi.org/10.1109/JSEN.2020.2989411

    Article  Google Scholar 

  8. Akl, R., Pasupathy, K., & Haidar, M. (2011). Anchor nodes placement for effective passive localization. In 2011 International conference on selected topics in mobile and wireless networking (iCOST) (pp. 127–132). https://doi.org/10.1109/iCOST.2011.6085823

  9. Karakaya, S., & Ocak, H. (2020). Low Cost easy-to-install indoor positioning system. Journal of Intelligent and Robotic Systems, 100, 131–144. https://doi.org/10.1007/s10846-020-01193-1

    Article  Google Scholar 

  10. Li, S., Deng, Z., Liu, Y., & Hu, E. (2020). A novel simultaneous calibration and localization algorithm framework for indoor scenarios. IEEE Access, 8, 180100–180112. https://doi.org/10.1109/ACCESS.2020.3027859

    Article  Google Scholar 

  11. Yan, X., Luo, Q., Yang, Y., Liu, S., Li, H., & Hu, C. (2019). ITL-MEPOSA: improved trilateration localization with minimum uncertainty propagation and optimized selection of anchor nodes for wireless sensor networks. IEEE Access, 7, 53136–53146. https://doi.org/10.1109/ACCESS.2019.2911032

    Article  Google Scholar 

  12. Yang, Z., & Liu, Y. (2008). Quality of trilateration: Confidence based iterative localization. In 2008 the 28th international conference on distributed computing systems (pp. 446–453). https://doi.org/10.1109/ICDCS.2008.59

  13. Sasiwat, Y., et al. (2019). Human movement effects on the performance of the RSSI-based trilateration method: Adaptive filters for distance compensation. Journal of Reliable Intelligent Environments., 6, 1–12. https://doi.org/10.1007/s40860-019-00094-x

    Article  Google Scholar 

  14. Mantilla-Gaviria, I. A., Leonardi, M., Galati, G., et al. (2015). Localization algorithms for multilateration (MLAT) systems in airport surface surveillance. Signal, Image and Video Processing, 9, 1549–1558. https://doi.org/10.1007/s11760-013-0608-1

    Article  Google Scholar 

  15. João Paulo Marques, P. G., et al. (2021). A cost-effective trilateration-based radio localization algorithm using machine learning and sequential least-square programming optimization. Computer Communications, 177, 1–9. https://doi.org/10.1016/j.comcom.2021.06.005

    Article  Google Scholar 

  16. Baek, S. H., et al. (2019). The trilateration-based BLE Beacon system for analyzing user-identified space usage of new ways of working offices. Building and Environment, 149, 264–274. https://doi.org/10.1016/j.buildenv.2018.12.030

    Article  Google Scholar 

  17. Mass-Sanchez, J., Vargas-Rosales, C., Ruiz-Ibarra, E., Garcia-Berumen, A., & Espinoza-Ruiz, A. (2020). Localization based on probabilistic multilateration approach for mobile wireless sensor networks. IEEE Access, 8, 54994–55011. https://doi.org/10.1109/ACCESS.2020.2978495

    Article  Google Scholar 

  18. He, S., & Chan, S.-H.G. (2017). INTRI: Contour-based trilateration for indoor fingerprint-based localization. IEEE Transactions on Mobile Computing, 16(6), 1676–1690. https://doi.org/10.1109/TMC.2016.2604810

    Article  Google Scholar 

  19. Liao, L., Chen, W., Zhang, C., Zhang, L., Xuan, D., & Jia, W. (2011). Two birds with one stone: Wireless access point deployment for both coverage and localization. IEEE Transactions on Vehicular Technology, 60(5), 2239–2252. https://doi.org/10.1109/TVT.2011.2109405

    Article  Google Scholar 

  20. Lee, J.-H., & Shin, B.-S. (2017). SensDeploy: Efficient sensor deployment strategy for real-time localization. Human-Centric Computing and Information Sciences. https://doi.org/10.1186/s13673-017-0117-2

    Article  Google Scholar 

  21. Zheng, Y., Liu, J., Sheng, M., Han, S., Shi, Y., & Valaee, S. (2021). Toward practical access point deployment for angle-of-arrival based localization. IEEE Transactions on Communications, 69(3), 2002–2014. https://doi.org/10.1109/TCOMM.2020.3042267

    Article  Google Scholar 

  22. Zhou, B., Tu, W., Mai, K., Xue, W., Ma, W., & Li, Q. (2020). A novel access point placement method for WiFi fingerprinting considering existing aps. IEEE Wireless Communications Letters, 9(11), 1799–1802. https://doi.org/10.1109/LWC.2020.2981793

    Article  Google Scholar 

  23. Jia, M., Khattak, S. B. A., Guo, Q., Gu, X., & Lin, Y. (2020). Access point optimization for reliable indoor localization systems. IEEE Transactions on Reliability, 69(4), 1424–1436. https://doi.org/10.1109/TR.2019.2955748

    Article  Google Scholar 

  24. Tong, X., Wang, H., Liu, X., & Qu, W. (2021). MapFi: Autonomous mapping of Wi-Fi infrastructure for indoor localization. In IEEE transactions on mobile computing. https://doi.org/10.1109/TMC.2021.3108155

  25. Sheng, M., Zheng, Y., Liu, J., Valaee, S., & Li, J. (2020). Accurate indoor localization assisted with optimizing array orientations and receiver positions. IEEE Transactions on Vehicular Technology, 69(1), 509–521. https://doi.org/10.1109/TVT.2019.2951022

    Article  Google Scholar 

  26. Njima, W., Chafii, M., Nimr, A., & Fettweis, G. (2020). Deep learning based data recovery for localization. IEEE Access, 8, 175741–175752. https://doi.org/10.1109/ACCESS.2020.3026615

    Article  Google Scholar 

  27. Li, Y., Hu, X., Zhuang, Y., Gao, Z., Zhang, P., & El-Sheimy, N. (2020). Deep reinforcement learning (DRL): Another perspective for unsupervised wireless localization. IEEE Internet of Things Journal, 7(7), 6279–6287. https://doi.org/10.1109/JIOT.2019.2957778

    Article  Google Scholar 

  28. Hu, J., Liu, D., Yan, Z., & Liu, H. (2019). Experimental analysis on weight K-nearest neighbor indoor fingerprint positioning. IEEE Internet of Things Journal, 6(1), 891–897. https://doi.org/10.1109/JIOT.2018.2864607

    Article  Google Scholar 

  29. Hoang, M. T., Yuen, B., Dong, X., Lu, T., Westendorp, R., & Reddy, K. (2019). Recurrent neural networks for accurate RSSI indoor localization. IEEE Internet of Things Journal, 6(6), 10639–10651. https://doi.org/10.1109/JIOT.2019.2940368

    Article  Google Scholar 

  30. Yim, J. (2008). Introducing a decision tree-based indoor positioning technique. Expert Systems with Applications., 34(2), 1296–1302. https://doi.org/10.1016/j.eswa.2006.12.028

    Article  Google Scholar 

  31. Wang, L., Zhou, H., Jiang, G., & Zheng, B. (2015). WiFi-based self-adaptive matching and preprocessing WKNN algorithm. Signal Processing, 31(9), 1067–1074.

    Google Scholar 

  32. Varma, P. S., & Anand, V. (2022). Intelligent scanning period dilation based Wi-Fi fingerprinting for energy efficient indoor positioning in IoT applications. The Journal of Supercomputing. https://doi.org/10.1007/s11227-022-04980-9

    Article  Google Scholar 

  33. Nessa, A., Adhikari, B., Hussain, F., & Fernando, X. N. (2020). A survey of machine learning for indoor positioning. IEEE Access, 8, 214945–214965. https://doi.org/10.1109/ACCESS.2020.3039271

    Article  Google Scholar 

  34. Tao, Y., & Ganz, A. (2020). Simulation framework for evaluation of indoor navigation systems. IEEE Access, 8, 20028–20042. https://doi.org/10.1109/ACCESS.2020.2968435

    Article  Google Scholar 

  35. Varma, P. S., & Anand, V. (2022). Fault-tolerant indoor localization based on speed conscious recurrent neural network using Kullback–Leibler divergence. Peer-to-Peer Network Application, 15(3), 1370–1384. https://doi.org/10.1007/s12083-022-01301-y

    Article  Google Scholar 

  36. Singla, A., Padakandla, S., & Bhatnagar, S. (2021). Memory-based deep reinforcement learning for obstacle avoidance in UAV with limited environment knowledge. EEE Transactions on Intelligent Transportation Systems, 22(1), 107–118. https://doi.org/10.1109/TITS.2019.2954952

    Article  Google Scholar 

  37. Li, P., Yang, X., Yin, Y., Gao, S., & Niu, Q. (2020). Smartphone-based indoor localization with integrated fingerprint signal. IEEE Access, 8, 33178–33187. https://doi.org/10.1109/ACCESS.2020.2974038

    Article  Google Scholar 

  38. Anand, V., Agrawal, P., Varma, P.S., Pandey, S., & Kumar, S. (2021). Azimuth tree-based self-organizing protocol for internet of things. In Proceedings of fifth international congress on information and communication technology. Advances in intelligent systems and computing (Vol. 1184, pp. 342–356), Springer, Singapore. https://doi.org/10.1007/978-981-15-5859-7_34

  39. Varma, P. S., & Anand, V. (2021). Indoor localization for IoT applications: Review, challenges and manual site survey approach. IEEE Bombay Section Signature Conference (IBSSC), 2021, 1–6. https://doi.org/10.1109/IBSSC53889.2021.9673236

    Article  Google Scholar 

  40. Huang, P., Zhao, H., Liu, W., & Jiang, D. (2021). MAPS: Indoor localization algorithm based on multiple AP selection. Mobile Networks and Applications. https://doi.org/10.1007/s11036-019-01411-7

    Article  Google Scholar 

  41. Labinghisa, B., & Lee, D. (2021). Neural network-based indoor localization system with enhanced virtual access points. The Journal of Supercomputing. https://doi.org/10.1007/s11227-020-03272-4

    Article  Google Scholar 

  42. Gu, F., Valaee, S., Khoshelham, K., Shang, J., & Zhang, R. (2020). Landmark graph-based indoor localization. IEEE Internet of Things Journal, 7(9), 8343–8355. https://doi.org/10.1109/JIOT.2020.2989501

    Article  Google Scholar 

  43. Varma, P. S., & Anand, V. (2021). Random forest learning based indoor localization as an IoT service for smart buildings. Wireless Personal Communications, 117, 3209–3227. https://doi.org/10.1007/s11277-020-07977-w

    Article  Google Scholar 

  44. Kanrar, S., Dawar, K., & Pundir, A. (2020). Pedestrian localisation in the typical indoor environments. Multimedia Tools and Applications, 79, 27833–27866. https://doi.org/10.1007/s11042-020-09291-w

    Article  Google Scholar 

  45. Jeong, J., Yeon, S., Kim, T., et al. (2018). SALA: Smartphone-assisted localization algorithm for positioning indoor IoT devices. Wireless Networks, 24, 27–47. https://doi.org/10.1007/s11276-016-1309-9

    Article  Google Scholar 

  46. Zhang, X., He, F., Chen, Q., et al. (2022). A differentially private indoor localization scheme with fusion of WiFi and bluetooth fingerprints in edge computing. Neural Computing and Applications. https://doi.org/10.1007/s00521-021-06815-9

    Article  Google Scholar 

  47. Zhang, M., Jia, J., Chen, J., et al. (2021). Real-time indoor localization using smartphone magnetic with LSTM networks. Neural Computing and Applications, 33, 10093–10110. https://doi.org/10.1007/s00521-021-05774-5

    Article  Google Scholar 

Download references

Funding

No funding was received for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pothuri Surendra Varma.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varma, P.S., Anand, V. ReMAPP: reverse multilateration based access point positioning using multivariate regression for indoor localization in smart buildings. Telecommun Syst 83, 303–322 (2023). https://doi.org/10.1007/s11235-023-01021-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01021-5

Keywords

Navigation