Skip to main content

Advertisement

Log in

Joint throughput-energy optimization in multi-gateway LoRaWAN networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Nowadays, LoRaWAN has become one of the most widely deployed low-power wide-area technologies suitable for Internet of Things applications. Sensor nodes powered by battery sources with a finite lifetime are the most common in these applications. Deploying a massive number of these nodes that send sporadic traffic increases collisions. In this paper, we propose a two-step algorithm in order to increase LoRaWAN network throughput, extend its lifetime, and therefore achieve high energy efficiency. First, we formulate a multi-objective optimization problem that jointly maximizes the network throughput and minimizes power consumption. Then, the power control step reduces the transmission power to the minimum allowed level, which preserves the reliability of communications. Our algorithm derives the optimal spreading factor and transmission power configuration for all nodes in LoRaWAN networks with multiple gateways. The results show that the proposed algorithm achieves higher energy efficiency compared to adaptive data rate (ADR) and other relevant state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Computation time is evaluated on a 2.6 GHz Intel i7 computer with 16 GB of memory size.

References

  1. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142.

    Article  Google Scholar 

  2. Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32.

    Article  Google Scholar 

  3. Catherwood, P. A., Steele, D., Little, M., Mccomb, S., & Mclaughlin, J. (2018). A community-based iot personalized wireless healthcare solution trial. IEEE Journal of Translational Engineering in Health and Medicine, 6, 1–13.

    Article  Google Scholar 

  4. Petäjäjärvi, J., Mikhaylov, K., Hämäläinen, M., & Iinatti, J. (2016)“Evaluation of lora lpwan technology for remote health and wellbeing monitoring,” in 2016 10th International Symposium on Medical Information and Communication Technology (ISMICT), pp. 1–5.

  5. Sartori, D., & Brunelli, D. (2016). A smart sensor for precision agriculture powered by microbial fuel cells. IEEE Sensors Applications Symposium (SAS), 2016, 1–6.

    Google Scholar 

  6. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: a survey. Computer Networks, 54(15), 2787–2805.

    Article  Google Scholar 

  7. Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys Tutorials, 19(2), 855–873.

    Article  Google Scholar 

  8. Mekkia, K., Bajica, E., Chaxela, F., & Meyerb, F. (2018). A comparative study of LPWAN technologies for large-scale IoT deployment, ICT express.

  9. Shanmuga Sundaram, J. P., Du, W., & Zhao, Z. (2020). A survey on lora networking: Research problems, current solutions, and open issues. IEEE Communications Surveys Tutorials, 22(1), 371–388.

    Article  Google Scholar 

  10. Almuhaya, M. A. M., Jabbar, W. A., Sulaiman, N., & Abdulmalek, S. (2022). A survey on lorawan technology: Recent trends, opportunities, simulation tools and future directions Electronics, 11(1):[Online]. Available: https://www.mdpi.com/2079-9292/11/1/164.

  11. Haxhibeqiri, J., De Poorter, E., Moerman, I., & Hoebeke, J. (2018). A survey of lorawan for iot: From technology to application. Sensors, 18, 3995.

    Article  Google Scholar 

  12. Casals Ibáñez, L., Mir Masnou, B., Vidal Ferré, R., & Gomez, C. (2017). Modeling the energy performance of lorawan. Sensors, 17, 2364.

    Article  Google Scholar 

  13. Finnegan, J., Brown, S., & Farrell, R. (2018). Modeling the energy consumption of lorawan in ns-3 based on real world measurements. Global Information Infrastructure and Networking Symposium (GIIS), 2018, 1–4.

    Google Scholar 

  14. BOUGUERA, T., Diouris, J.-F., Chaillout, J.-J., jaouadi, r., & Andrieux, G. (2018). Energy consumption model for sensor nodes based on LoRa and LoRaWAN,” Sensors, 18(7), 2104, Jun. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01828769.

  15. Alliance, L. (2017). LoRaWAN specification version 1.1. LoRa Alliance: Tech. Rep.

    Google Scholar 

  16. Mikhaylov, K., Stusek, M., Masek, P., Fujdiak, R., Mozny, R., Andreev, S., & Hosek, J. (2020). On the performance of multi-gateway lorawan deployments: An experimental study. IEEE Wireless Communications and Networking Conference (WCNC), 2020, 1–6.

    Google Scholar 

  17. Li, S., Raza, U., & Khan, A. (2018). How agile is the adaptive data rate mechanism of lorawan? IEEE Global Communications Conference (GLOBECOM), 2018, 206–212.

    Google Scholar 

  18. Kufakunesu, R., Hancke, G., Abu-Mahfouz, A. (2020). A survey on adaptive data rate optimization in lorawan: Recent solutions and major challenges. Sensors (Basel, Switzerland), 20, 09.

  19. Dantas Silva, F. S., Neto, E. P., Oliveira, H., Rosário, D., Cerqueira, E., Both, C., Zeadally, S., & Neto, A. V. (2021). A survey on long-range wide-area network technology optimizations. IEEE Access, pp. 1–1.

  20. Georgiou, O., & Raza, U. (2017). Low power wide area network analysis: Can LoRa scale? IEEE Wireless Communications Letters, 6(2), 162–165.

    Article  Google Scholar 

  21. Lim, J., & Han, Y. (2018). Spreading factor allocation for massive connectivity in lora systems. IEEE Communications Letters, 22(4), 800–803.

    Article  Google Scholar 

  22. Caillouet, C., Heusse, M., & Rousseau, F. (2020). Bringing fairness in lorawan through sf allocation optimization. IEEE Symposium on Computers and Communications (ISCC), 2020, 1–6.

    Google Scholar 

  23. Reynders, B., Meert, W., & Pollin, S. (2017). Power and spreading factor control in low power wide area networks. IEEE International Conference on Communications (ICC), 2017, 1–6.

    Google Scholar 

  24. Tiurlikova, A., Stepanov, N., & Mikhaylov, K. (2018)“Method of assigning spreading factor to improve the scalability of the lorawan wide area network,” in 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 1–4.

  25. Premsankar, G., Ghaddar, B., Slabicki, M., & Francesco, M. D. (2020). Optimal configuration of lora networks in smart cities. IEEE Transactions on Industrial Informatics, 16(12), 7243–7254.

    Article  Google Scholar 

  26. “network simulator ns-3,” accessed on 26 November 2020. [Online]. Available: https://www.nsnam.org/

  27. Reynders, B., Wang, Q., Tuset-Peiro, P., Vilajosana, X., & Pollin, S. (2018). Improving reliability and scalability of LoRaWANs through lightweight scheduling. IEEE Internet of Things Journal, 5(3), 1830–1842.

    Article  Google Scholar 

  28. Lee, J., Jeong, W., & Choi, B. (2018). A scheduling algorithm for improving scalability of LoRaWAN. International Conference on Information and Communication Technology Convergence, Jul. pp. 1383–1388.

  29. Cuomo, F., Campo, M., Caponi, A., Bianchi, G., Rossini, G., & Pisani, P. (2017). EXPLoRa: Extending the performance of LoRa by suitable spreading factor allocations. 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Oct., pp. 1–8.

  30. Georgiou, O., & Raza, U. (2017). Low power wide area network analysis: Can lora scale? IEEE Wireless Communications Letters, 6(2), 162–165.

    Article  Google Scholar 

  31. Cuomo, F., Campo, M., Bassetti, E., Cartella, L., Sole, F, & Bianchi, G. (2018). Adaptive mitigation of the air-time pressure in lora multi-gateway architectures. European Wireless 2018; 24th European Wireless Conference, pp. 1–6.

  32. Sallum, E., Pereira, N., Alves, M., & Santos, M. (2020). Improving quality-of-service in lora low-power wide-area networks through optimized radio resource management. Journal of Sensor and Actuator Networks, 9, 10.

    Article  Google Scholar 

  33. Slabicki, M., Premsankar, G., & Di Francesco, M. (2018). Adaptive configuration of lora networks for dense iot deployments. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, pp. 1–9.

  34. Narieda, S., Fujii, T., & Umebayashi, K. (2020). Energy constrained optimization for spreading factor allocation in lorawan. Sensors, vol. 20, no. 16. [Online]. Available: https://www.mdpi.com/1424-8220/20/16/4417.

  35. Teymuri, B., Serati, R., Anagnostopoulos, N. A., & Rasti, M. (2023). Lp-mab: Improving the energy efficiency of lorawan using a reinforcement-learning-based adaptive configuration algorithm. Sensors, vol. 23, no. 4. [Online]. Available: https://www.mdpi.com/1424-8220/23/4/2363

  36. Loubany, A., Lahoud, S., & El Chall, R. (2020). Adaptive algorithm for spreading factor selection in LoRaWAN networks with multiple gateways. Computer Networks, vol. 182, p. 107491. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1389128620311609.

  37. Farhad, A., Kim, D.-H., Subedi, S., & Pyun, J.-Y. (2020). Enhanced lorawan adaptive data rate for mobile internet of things devices. Sensors, vol. 20, no. 22. [Online]. Available: https://www.mdpi.com/1424-8220/20/22/6466.

  38. Semtech, “SX1272/3/6/7/8: LoRa modem designer guide AN1200.13, rev.1,” Semtech, Tech. Rep., Jul 2013.

  39. LoRa Alliance Technical Committee Regional Parameters Workgroup. (2018). LoRaWAN 1.1 Regional Parameters. LoRa Alliance: Tech. Rep.

  40. Beltramelli, L., Mahmood, A. Österberg, P., & Gidlund, M. (2020). LoRa beyond ALOHA: An Investigation of Alternative Random Access Protocols. arXiv:2002.10732.

  41. Semtech, “SX1272/3 datasheet, rev. 4,” Semtech Corporation, Tech. Rep., Jan 2019.

  42. Adelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., & Watteyne, T. (2017). Understanding the limits of lorawan. IEEE Communications Magazine, 55(9), 34–40.

    Article  Google Scholar 

  43. Grodzevich, O., & Romanko, O. (2006). Normalization and other topics in multi-objective optimization. Proceedings of the Fields-MITACS Industrial Problems Workshop, pp. 89–101.

  44. Grant, M., & Boyd, S. (2014). CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx, Mar.

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Loubany.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loubany, A., Lahoud, S., Samhat, A.E. et al. Joint throughput-energy optimization in multi-gateway LoRaWAN networks. Telecommun Syst 84, 271–283 (2023). https://doi.org/10.1007/s11235-023-01048-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01048-8

Keywords

Navigation