Skip to main content
Log in

Outage analysis of hybrid VLC–RF system for IoT application under energy harvesting

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper studies the performance of an Internet of Things (IoT) network with hybrid visible light communication (VLC)–radio frequency (RF) connectivity and energy harvesting (EH). The considered hybrid network architecture can be adopted for various IoT applications where communications and energy harvesting using a single wireless technology is either infeasible or inefficient. The system performance is analyzed in term of outage probability where the exact closed-form expression is derived. The system performance is shown for various system parameters such as light emitting diode (LED) power, RF transmission power, power sharing factor, and data rate. The obtained analytical results are also verified through Monte Carlo simulation for various operating scenarios. The obtained results show that the optimum harvesting time may broadly vary based on the adopted system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data-sets were generated or analysed during the current study.

References

  1. Behmann, F., & Wu, K. (2015). Collaborative internet of things (C-IoT): For future smart connected life and business (1st ed.). New Jersey: John Wiley & Sons Ltd.

    Book  Google Scholar 

  2. Ghosh, N., Chandra, S., Sachidananda, V., & Elovici, Y. (2019). Softauthz: A context-aware, behavior-based authorization framework for home iot. IEEE Internet of Things Journal, 6(6), 10 773-10 785.

    Article  Google Scholar 

  3. Farooq, M. O., Wheelock, I., & Pesch, D. (2020). Iot-connect: An interoperability framework for smart home communication protocols. IEEE Consumer Electronics Magazine, 9(1), 22–29.

    Article  Google Scholar 

  4. Sharma, P. K., Jeong, Y. S., & Park, J. H. (2018). Eh-hl: Effective communication model by integrated eh-wsn and hybrid lifi/wifi for iot. IEEE Internet of Things Journal, 5(3), 1719–1726.

    Article  Google Scholar 

  5. Guo, Y., Xiong, K., Lu, Y., Wang, D., Fan, P., & Letaief, K. B. (2021). Achievable information rate in hybrid vlc-rf networks with lighting energy harvesting. IEEE Transactions on Communications, 69(10), 6852–6864.

    Article  Google Scholar 

  6. Peng, H., Li, Q., Pandharipande, A., Ge, X., & Zhang, J. (2021). End-to-end performance optimization of a dual-hop hybrid vlc/rf iot system based on slipt. IEEE Internet of Things Journal, 8(24), 17 356-17 371.

    Article  Google Scholar 

  7. Zhang, C., Ye, J., Pan, G., & Ding, Z. (2018). Cooperative hybrid vlc-rf systems with spatially random terminals. IEEE Transactions on Communications, 66(12), 6396–6408.

    Article  Google Scholar 

  8. Al-Jarrah, M. A., Yaseen, M. A., Al-Dweik, A., Dobre, O. A., & Alsusa, E. (2020). Decision fusion for iot-based wireless sensor networks. IEEE Internet of Things Journal, 7(2), 1313–1326.

    Article  Google Scholar 

  9. Chae, S. H., Jeong, C., & Lim, S. H. (2018). Simultaneous wireless information and power transfer for internet of things sensor networks. IEEE Internet of Things Journal, 5(4), 2829–2843.

    Article  Google Scholar 

  10. Li, Q., Feng, S., Pandharipande, A., Ge, X., Ni, Q., & Zhang, J. (2017). Wireless-powered cooperative multi-relay systems with relay selection. IEEE Access, 5, 19 058-19 071.

    Article  Google Scholar 

  11. Prasad, R. V., Devasenapathy, S., Rao, V. S., & Vazifehdan, J. (2014). Reincarnation in the ambiance: Devices and networks with energy harvesting. IEEE Communications Surveys & Tutorials, 16(1), 195–213.

    Article  Google Scholar 

  12. Ku, M. L., Li, W., Chen, Y., & Liu, K. J. R. (2016). Advances in energy harvesting communications: Past, present, and future challenges. IEEE Communications Surveys & Tutorials, 18(2), 1384–1412.

    Article  Google Scholar 

  13. Pan, G., Diamantoulakis, P. D., Ma, Z., Ding, Z., & Karagiannidis, G. K. (2019). Simultaneous lightwave information and power transfer: Policies, techniques, and future directions. IEEE Access, 7, 28 250-28 257.

    Article  Google Scholar 

  14. Clerckx, B., Huang, K., Varshney, L. R., Ulukus, S., & Alouini, M. S. (2021). Wireless power transfer for future networks: Signal processing, machine learning, computing, and sensing. IEEE Journal of Selected Topics in Signal Processing, 15(5), 1060–1094.

    Article  Google Scholar 

  15. Han, Y., Pandharipande, A., & Ting, S. H. (2009). Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Transactions on Wireless Communications, 8(10), 4945–4950.

    Article  Google Scholar 

  16. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: an information theoretic perspective. In Proceedings of the IEEE (vol. 97(5), pp. 894–914).

  17. Rallis, K. G., Papanikolaou, V. K., Diamantoulakis, P. D., Tegos, S. A., Dowhuszko, A. A., Khalighi, M.-A., & Karagiannidis, G. K. (2023). Energy efficient cooperative communications in aggregated VLC/RF networks with NOMA. IEEE Transactions on Communications, 1–12.

  18. Ye, Y., Shi, L., Chu, X., Zhang, H., & Lu, G. (2019). On the outage performance of swipt-based three-step two-way df relay networks. IEEE Transactions on Vehicular Technology, 68(3), 3016–3021.

    Article  Google Scholar 

  19. Shi, L., Ye, Y., Hu, R. Q., & Zhang, H. (2019). System outage performance for three-step two-way energy harvesting df relaying. IEEE Transactions on Vehicular Technology, 68(4), 3600–3612.

    Article  Google Scholar 

  20. Gurjar, D. S., Nguyen, H. H., & Tuan, H. D. (2019). Wireless information and power transfer for iot applications in overlay cognitive radio networks. IEEE Internet of Things Journal, 6(2), 3257–3270.

    Article  Google Scholar 

  21. Rakia, T., Yang, H., Gebali, F., & Alouini, M. S. (2016). Optimal design of dual-hop vlc/rf communication system with energy harvesting. IEEE Communications Letters, 20(10), 1979–1982.

    Article  Google Scholar 

  22. Xiao, Y., Diamantoulakis, P. D., Fang, Z., Ma, Z., Hao, L., & Karagiannidis, G. K. (2020). Hybrid lightwave/rf cooperative noma networks. IEEE Transactions on Wireless Communications, 19(2), 1154–1166.

    Article  Google Scholar 

  23. Nauryzbayev, G., Abdallah, M., & Al-Dhahir, N. (2020). Outage analysis of cognitive electric vehicular networks over mixed rf/vlc channels. IEEE Transactions on Cognitive Communications and Networking, 6(3), 1096–1107.

    Article  Google Scholar 

  24. Obeed, M., Dahrouj, H., Salhab, A. M., Zummo, S. A., & Alouini, M. S. (2021). User pairing, link selection, and power allocation for cooperative noma hybrid vlc/rf systems. IEEE Transactions on Wireless Communications, 20(3), 1785–1800.

    Article  Google Scholar 

  25. Xiao, Y., Diamantoulakis, P. D., Fang, Z., Hao, L., Ma, Z., & Karagiannidis, G. K. (2021). Cooperative hybrid vlc/rf systems with slipt. IEEE Transactions on Communications, 69(4), 2532–2545.

    Article  Google Scholar 

  26. Raj, R., & Dixit, A. (2021). Outage analysis and reliability enhancement of hybrid vlc-rf networks using cooperative non-orthogonal multiple access. IEEE Transactions on Network and Service Management, 18(4), 4685–4696.

    Article  Google Scholar 

  27. Jian, Y.-H., Wang, C.-C., Chow, C.-W., Gunawan, W. H., Wei, T.-C., Liu, Y., & Yeh, C.-H. (2023). Optical beam steerable orthogonal frequency division multiplexing (OFDM) non-orthogonal multiple access (NOMA) visible light communication using spatial-light modulator based reconfigurable intelligent surface. IEEE Photonics Journal, 15(4), 1–8.

    Article  Google Scholar 

  28. Boshkovska, E., Ng, D. W. K., Zlatanov, N., & Schober, R. (2015). Practical non-linear energy harvesting model and resource allocation for swipt systems. IEEE Communications Letters, 19(12), 2082–2085.

  29. Kang, J.-M., Kim, I.-M., & Kim, D. I. (2019). Joint tx power allocation and rx power splitting for swipt system with multiple nonlinear energy harvesting circuits. IEEE Wireless Communications Letters, 8(1), 53–56.

  30. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press.

    Google Scholar 

  31. Ghosh, S., & Alouini, M.-S. (2022). On the performance optimization of two-way hybrid vlc/rf-based iot system over cellular spectrum. IEEE Internet of Things Journal, 9(21), 21 204-21 213.

    Article  Google Scholar 

  32. Lim, B., Nam, S. S., Ko, Y. C., & Alouini, M. S. (2020). Outage analysis for downlink non-orthogonal multiple access (noma) with cdf-based scheduling. IEEE Wireless Communications Letters, 9(6), 822–825.

    Article  Google Scholar 

Download references

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Only SG contributed to the study conception and design. Material preparation and analysis were performed by SG.

Corresponding author

Correspondence to Sutanu Ghosh.

Ethics declarations

Conflict of interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

It is hereby declared that the manuscript (in part or full) has not yet been submitted nor under consideration anywhere else for possible publication.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I: Proof of (25)

$$\begin{aligned}{} & {} \Pr [R_{SG}\ge R_{cl}]=\Pr [{A_o (\mu _{o})^2} X_{SG}\ge u_{cl}]\nonumber \\{} & {} \quad =\int _{\frac{u_{cl}}{A_o (\mu _{o})^2}}^{\infty }\frac{n_m^{n_m}X_{SG}^{n_m-1}\exp (-n_m X_{SG})}{\Gamma {(n_m)}}dX_{SG} \nonumber \\{} & {} \quad =\frac{1}{\Gamma (n_m)}\Gamma \bigg (n_m,n_m \frac{u_{cl}}{A_o (\mu _{o})^2}\bigg ). \end{aligned}$$
(32)

Appendix II: Proof of (26)

$$\begin{aligned}{} & {} \textrm{Pr}[R_{CD}^{(1)}\ge R_{cd_1},R_{CD}^{(2)} \ge R_{cd_2}]\nonumber \\{} & {} \quad = \int _{\frac{u_2}{A_2}}^{\infty }\exp (-\omega )\exp \bigg (-\frac{u_1}{A_1}(A_2\omega +1)\bigg )d\omega \nonumber \\{} & {} \quad =\frac{A_1}{{A_1}+{A_2u_1}}\exp \big (-\frac{u_1}{A_1}-\frac{u_2}{A_2}-\frac{u_1u_2}{A_1}\big ). \end{aligned}$$
(33)

Glossary

AWGN:

Additive white Gaussian noise

CCR:

Cooperative CR

CCRNCCR:

Network

CDF:

Cumulative distribution function

CHD:

Cluster head

CR:

Cognitive radio

DC:

Direct current

DF:

Decode-and-forward

EH:

Energy harvesting

FoV:

Field-of-view

HAN:

Home area network

IoD:

IoT device

IoT:

Internet of Things

LED:

Light emitting diode

Li-Fi:

Light fidelity

LS:

Local server

MAC:

Multiple access

MS:

Master server

NOMA:

Non-orthogonal multiple access

OAP:

Optical access point

PDF:

Probability density function

PS:

Power splitting

PSIC:

Perfect self-interference cancellation

PT:

Power transmitter

QoS:

Quality-of-service

RF:

Radio frequency

SE:

Spectrum efficiency

SINR:

Signal-to-interference-ratio

SLIPT:

Simultaneous light-wave information and power transfer

SNR:

Signal-to-noise ratio

TS:

Time switching

VLC:

Visible light communication

WPT:

Wireless power transfer

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S. Outage analysis of hybrid VLC–RF system for IoT application under energy harvesting. Telecommun Syst 84, 387–397 (2023). https://doi.org/10.1007/s11235-023-01054-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01054-w

Keywords

Navigation