Skip to main content
Log in

On the leakage-rate performance of untrusted relay-aided NOMA under co-channel interference

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This study seeks an answer for the impact of the co-channel interference on the leakage rate of illegitimate relay-assisted power-domain non-orthogonal multiple access (NOMA) networks. The power-domain NOMA-based uni-/bi-directional information exchange through an illegitimate half-/full-duplex relay is adopted in the system model. Moreover, a limited number of co-channel interferers and friendly jammers are affected by the illegitimate relay in the network. Extensive computer simulations, analytical, and asymptotic results reveal that as the illegitimate relay is affected by a limited number of friendly jammers and co-channel interferers, its achievable rate cannot be enhanced and saturates at high signal-to-noise ratio. Results also show that the co-channel interference causes system coding gain losses on the users’ outage performance. In addition, the illegitimate relay remains active between \(-\,10\) and 25 dB for uni-/bi-directional information exchange. After 25 dB, the illegitimate relay saturates and experiences outages. Additionally, the order of decoding also impacts the illegitimate relay’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In 2013 IEEE 77th vehicular technology conference (VTC spring) (pp. 1–5).

  2. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., & Poor, H. V. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191.

    Article  Google Scholar 

  3. Ozduran, V., Cioffi, J. M., & Yarman, S. B. (2013). Opportunistic source-pair selection (OSPS) method for multiuser bi-directional wireless relaying networks. In 2013 IEEE 14th workshop on signal process. advances in wireless communications (SPAWC) (pp. 565–569).

  4. Cover, T. M. (1975). Some advances in broadcast channels. In Advances in Communication Theory. San Francisco. (pp. 229–260). https://doi.org/10.1016/B978-0-12-010904-3.50011-7.

  5. Ozduran, V., Huda Mahmood, N., & Nomikos, N. (2022). Performance analysis of power-domain non-orthogonal multiple access for full-duplex two-way relaying. Transactions on Emerging Telecommunications Technologies, 33(7), e4487.

    Article  Google Scholar 

  6. Daemen, J., & Rijmen, V. (1999). AES proposal: Rijndael.

  7. Rivest, R., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21, 120–126.

    Article  Google Scholar 

  8. Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387.

    Article  Google Scholar 

  9. Sun, L., Zhang, T., Li, Y., & Niu, H. (2012). Performance study of two-hop amplify-and-forward systems with untrustworthy relay nodes. IEEE Transactions on Vehicular Technology, 61(8), 3801–3807.

    Article  Google Scholar 

  10. Duy, T. T., Duong, T. Q., Thanh, T. L., & Bao, V. N. Q. (2015). Secrecy performance analysis with relay selection methods under impact of co-channel interference. IET Communications, 9(11), 1427–1435.

    Article  Google Scholar 

  11. El-Malek, A. H. A., Salhab, A. M., & Zummo, S. A. (2015) Optimal power allocation for enhancing physical layer security in opportunistic relay networks in the presence of co-channel interference. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6).

  12. Vahidian, S., Aissa, S., & Hatamnia, S. (2015). Relay selection for security-constrained cooperative communication in the presence of eavesdropper’s overhearing and interference. IEEE Wireless Communications Letters, 4(6), 577–580.

    Article  Google Scholar 

  13. Hu, W., Li, Z., Li, H., Si, J., & Huang, H. (2017). SRT analysis of relay selection in the presence of multiple co-channel interferers. IET Communications, 11(6), 809–816.

    Article  Google Scholar 

  14. Renna, F., Laurenti, N., & Poor, H. V. (2012). Physical-layer secrecy for OFDM transmissions over fading channels. IEEE Transactions on Information Forensics and Security, 7(4), 1354–1367.

    Article  Google Scholar 

  15. Sun, Y., Ng, D. W. K., & Schober, R. (2017). Resource allocation for secure full-duplex OFDMA radio systems: (Invited paper). In 2017 IEEE 18th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 1–5).

  16. Ozduran, V. (2018). Physical layer security of multi-user full-duplex one-way wireless relaying network. In 2018 Advances in wireless and optical communications (RTUWO) (pp. 17–22).

  17. Ozduran, V. (2019). Secrecy analysis of multi-user half/full-duplex wireless bi-directional relaying network. Balkan Journal of Electrical and Computer Engineering, 7, 342–354.

    Article  Google Scholar 

  18. Romero-Zurita, N., Ghogho, M., & McLernon, D. (2011). Physical layer security of MIMO-OFDM systems by beamforming and artificial noise generation. Physical Communication, 4(4), 313–321.

    Article  Google Scholar 

  19. Chen, J., Yang, L., & Alouini, M. (2018). Physical layer security for cooperative NOMA systems. IEEE Transactions on Vehicular Technology, 67(5), 4645–4649.

    Article  Google Scholar 

  20. Yu, C., Ko, H., Peng, X., Xie, W., & Zhu, P. (2019). Jammer-aided secure communications for cooperative NOMA systems. IEEE Communications Letters, 23(11), 1935–1939.

    Article  Google Scholar 

  21. Abbasi, O., & Ebrahimi, A. (2017). Secrecy analysis of a NOMA system with full duplex and half duplex relay. In 2017 Iran workshop on communication and information theory (IWCIT) (pp. 1–6).

  22. Wang, Z., & Peng, Z. (2019). Secrecy performance analysis of relay selection in cooperative NOMA systems. IEEE Access, 7, 86274–86287.

    Article  Google Scholar 

  23. Yu, C., Ko, H., Peng, X., & Xie, W. (2019). Secrecy outage performance analysis for cooperative NOMA over Nakagami-\(m\) channel. IEEE Access, 7, 79866–79876.

    Article  Google Scholar 

  24. Zheng, B., Wen, M., Wang, C., Wang, X., Chen, F., Tang, J., & Ji, F. (2018). Secure NOMA based two-way relay networks using artificial noise and full duplex. IEEE Journal on Selected Areas in Communications, 36(7), 1426–1440.

    Article  Google Scholar 

  25. Lei, H., Yang, Z., Park, K., Ansari, I. S., Pan, G., & Alouini, M. (2019). On physical layer security of multiple-relay assisted NOMA systems. In 2019 IEEE international conference on communications workshops (ICC workshops) (pp. 1–6).

  26. ElHalawany, B. M., Ruby, R., Riihonen, T., & Wu, K. (2018). Performance of cooperative NOMA systems under passive eavesdropping. In 2018 IEEE global communications conference (GLOBECOM) (pp. 1–6).

  27. Li, A. (2019). Enhancing the physical layer security of cooperative NOMA system. In 2019 IEEE 3rd information technology, networking, electronic and automation control conference (ITNEC) (pp. 2194–2198).

  28. Abolpour, M., Mirmohseni, M., & Aref, M. R. (2019). Outage performance in secure cooperative NOMA. In 2019 Iran workshop on communication and information theory (IWCIT) (pp. 1–6).

  29. Zaghdoud, N., Alouane, W. H., Boujemaa, H., Mnaouer, A. B., & Touati, F. (2019). Secrecy performance of AF relaying in cooperative NOMA over Rician channel. In2019 15th international wireless communications mobile computing conference (IWCMC) (pp. 805–810).

  30. Lv, L., Jiang, H., Ding, Z., Yang, L., & Chen, J. (2019). Exploiting adaptive jamming in secure cooperative NOMA with an untrusted relay. In ICC 2019—2019 IEEE international conference on communications (ICC) (pp. 1–6).

  31. Zheng, B., Wen, M., Chen, F., Tang, J., & Ji, F. (2018). Secure NOMA based full-duplex two-way relay networks with artificial noise against eavesdropping. In 2018 IEEE international conference on communications (ICC) (pp. 1–6).

  32. Feng, Y., Yang, Z., & Yan, S. (2017). Non-orthogonal multiple access and artificial-noise aided secure transmission in FD relay networks. In 2017 IEEE Globecom workshops (GC wkshps) (pp. 1–6).

  33. Zaghdoud, N., Alouane, W. H., Boujemaa, H., & Touati, F. (2019). Secure performance of AF and DF relaying in cooperative NOMA systems. In 2019 19th international conference on sciences and techniques of automatic control and computer engineering (STA) (pp. 614–619).

  34. Cao, Y., Tang, J., Zhao, N., Chen, Y., Zhang, X. Y., Jin, M., & Alouini, M. (2019). Full-duplex relay assisted secure transmission for NOMA networks. In 2019 IEEE/CIC international conference on communications in China (ICCC) (pp. 596–601).

  35. Liu, F., Li, J., Li, S., & Liu, Y. (2018). Physical layer security of full-duplex two-way AF relaying networks with optimal relay selection. In 2018 IEEE Globecom workshops (GC wkshps) (pp. 1–6).

  36. Arafa, A., Shin, W., Vaezi, M., & Poor, H. V. (2020). Secure relaying in non-orthogonal multiple access: Trusted and untrusted scenarios. IEEE Transactions on Information Forensics and Security, 15, 210–222.

    Article  Google Scholar 

  37. Xiang, Z., Yang, W., Pan, G., Cai, Y., & Sun, X. (2019). Secure transmission in non-orthogonal multiple access networks with an untrusted relay. IEEE Wireless Communications Letters, 8(3), 905–908.

    Article  Google Scholar 

  38. Xiang, Z., Yang, W., Cai, Y., Ding, Z., & Song, Y. (2020). Secure transmission design in HARQ assisted cognitive NOMA networks. IEEE Transactions on Information Forensics and Security, 15, 2528–2541.

    Article  Google Scholar 

  39. Khan, W. U., Liu, J., Jameel, F., Khan, M. T. R., Ahmed, S. H., & Jäntti, R. (2020). Secure backscatter communications in multi-cell NOMA networks: Enabling link security for massive IoT networks. In IEEE INFOCOM 2020-IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 213–218).

  40. Khan, W. U., Jameel, F., Li, X., Bilal, M., & Tsiftsis, T. A. (2021). Joint spectrum and energy optimization of NOMA-enabled small-cell networks with QoS guarantee. IEEE Transactions on Vehicular Technology, 70(8), 8337–8342.

    Article  Google Scholar 

  41. Ozduran, V. (2020). Leakage rate analysis with imperfect channel state information for cooperative non-orthogonal multiple access networks. International Journal of Communication Systems, 33(9), e4387.

  42. Sun, Y., Ding, Z., Dai, X., & Karagiannidis, G. K. (2018). A feasibility study on network NOMA. IEEE Transactions on Communications, 66(9), 4303–4317.

    Article  Google Scholar 

  43. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communications. Cambridge University Press.

  44. Ikki, S. S., & Aissa, S. (2012). Performance analysis of two-way amplify-and-forward relaying in the presence of co-channel interferences. IEEE Transactions on Communications, 60(4), 933–939.

    Article  Google Scholar 

  45. Zou, Y., Wang, X., Shen, W., & Hanzo, L. (2014). Security versus reliability analysis of opportunistic relaying. IEEE Transactions on Vehicular Technology, 63(6), 2653–2661.

    Article  Google Scholar 

  46. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Tables of integrals, series and products (7th ed.). Elsevier Inc.

  47. Ibrahim, D. H., Hassan, E. S., & El-Dolil, S. A. (2014). Improving physical layer security in two-way cooperative networks with multiple eavesdroppers. In 2014 9th international conference on informatics and systems (pp. ORDS–8–ORDS–13).

  48. Ozduran, V., Soleimani-Nasab, E., & Yarman, B. S. (2016). Opportunistic source-pair selection for multi-user two-way AF wireless relaying networks. IET Communications, 10(16), 2106–2118.

    Article  Google Scholar 

  49. Ozduran, V., Yarman, B. S., & Cioffi, J. M. (2019). Opportunistic source-pair selection method with imperfect channel state information for multiuser bi-directional relaying networks. IET Communications, 13(7), 905–917.

    Article  Google Scholar 

  50. Jimenez Rodriguez, L., Tran, N. H., & Le-Ngoc, T. (2014). Performance of full-duplex AF relaying in the presence of residual self-interference. IEEE Journal on Selected Areas in Communications, 32(9), 1752–1764.

    Article  Google Scholar 

  51. Khan, W. U., Lagunas, E., Mahmood, A., Ali, Z., Chatzinotas, S., & Ottersten, B. (2022). Integration of NOMA with reflecting intelligent surfaces: A multi-cell optimization with SIC decoding errors. [Online]. Available: arXiv:2205.03248

  52. Khan, W. U., Lagunas, E., Ali, Z., Javed, M. A., Ahmed, M., Chatzinotas, S., Ottersten, B., & Popovski, P. (2022). Opportunities for physical layer security in UAV communication enhanced with intelligent reflective surfaces. [Online]. Available: arXiv:2203.16907

  53. Papoulis, A., & Pillai, U. (2001). Probability, random variables and stochastic processes (4th ed., p. 11). McGraw-Hill.

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkan Ozduran.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Proposition 1

Revisiting (2) and also considering the logarithm properties, below expressions can be achieved.

$$\begin{aligned}&F_{LR_{x_{2}}}^{HD(OWR)}\left( \gamma _{th}^{HD}\right) \nonumber \\&\quad =P _{r}\left( \frac{\sum _{v=i+1}^{L-1}\beta _{v}\gamma _{x}}{\beta _{i}\gamma _{x}+\gamma _{F}+\gamma _{J}+1}\le \underbrace{2^{2R}-1}_{\gamma _{th}^{\textrm{HD}}}\right) \nonumber \\&\quad ={\textrm{P}}_{r}\left( \gamma _{x}\le \frac{\gamma _{th}^{\textrm{HD}}\left( \gamma _{F}+\gamma _{J}+1\right) }{\left( \sum _{v=i+1}^{L-1}\beta _{v}-\beta _{i}\gamma _{th}^{HD}\right) }\right) \nonumber \\&\quad =1-P _{r}\left( \gamma _{x}\ge \frac{\gamma _{th}^{\textrm{HD}}\left( \gamma _{F}+\gamma _{J}+1\right) }{\left( \sum _{v=i+1}^{L-1}\beta _{v}-\beta _{i}\gamma _{th}^{HD}\right) }\right) \nonumber \\&\quad =1-P _{r}\left( 1-F_{\gamma _{x}}\left( \frac{\gamma _{th}^{\textrm{HD}}\left( \gamma _{F}+\gamma _{J}+1\right) }{\left( \sum _{v=i+1}^{L-1}\beta _{v}-\beta _{i}\gamma _{th}^{HD}\right) }\right) \right) \nonumber \\&\quad =1-{\mathbb {E}}_{\gamma _{J}}\left[ e^{-\gamma _{th}^{HD}\left( \frac{\gamma _{F}+\gamma _{J}+1}{\left( \sum _{v=i+1}^{L-1}\beta _{v}-\beta _{i}\gamma _{th}^{HD}\right) }\right) }|_{\gamma _{F},\gamma _{J}} \right] \nonumber \\&\quad =1-e^{-\gamma _{th}^{HD}\left( \frac{1}{P _{s}^{1}\Omega _{h}\left( \sum _{v=i+1}^{L-1}\beta _{v}-\beta _{i}\gamma _{th}^{HD}\right) }\right) }\nonumber \\&\qquad \times \int _{0}^{\infty }e^{-\gamma _{F}\left( \frac{\gamma _{th}^{HD}}{P _{s}^{1}\Omega _{h}\left( \sum _{v=i+1}^{L-1}\beta _{v}-\beta _{i}\gamma _{th}^{HD}\right) }\right) }f_{\gamma _{F}}\left( \gamma _{F}\right) d\gamma _{F}\nonumber \\&\qquad \times \int _{0}^{\infty }e^{-\gamma _{J}\left( \frac{\gamma _{th}^{HD}}{P _{s}^{1}\Omega _{h}\left( \sum _{v=i+1}^{L-1}\beta _{v}-\beta _{i}\gamma _{th}^{HD}\right) }\right) }f_{\gamma _{J}}\left( \gamma _{J}\right) d\gamma _{J} . \end{aligned}$$
(56)

Note that \(f\gamma _{x}\left( \gamma \right) =\frac{1}{P _{s}^{1}\Omega _{h}}e^{-\gamma \left( \frac{1}{P _{s}^{1}\Omega _{h}}\right) }\). Also note that sum of M independent and identically distributed (i.i.d) exponentially distributed RVs follows the Gamma distribution [44]. As such, the PDF expressions of \(\gamma _{F}\) and \(\gamma _{J}\) can be written as: \(f_{\gamma _{F}}\left( \gamma _{F}\right) =\left( \frac{1}{P _{J}\Omega _{f_{j}}}\right) ^{N}\frac{\gamma _{F}^{N-1}}{(N-1)!}e^{-\frac{\gamma _{F}}{P _{F}\Omega _{f_{k}}}}\) and \(f_{\gamma _{J}}\left( \gamma _{J}\right) =\left( \frac{1}{P _{J}\Omega _{m_{j}}}\right) ^{M}\frac{\gamma _{J}^{M-1}}{(M-1)!}e^{-\frac{\gamma _{J}}{P _{J}\Omega _{m_{j}}}}\) [53]. In this regard, substituting \(f_{\gamma _{F}}\left( \gamma _{F}\right) \) and \(f_{\gamma _{J}}\left( \gamma _{J}\right) \) into (56) and solving the integrals with the help of [46, Eq. (3.310.11)] and [46, Eq. (3.351.3)], the final CDF expression can be obtained as in (17). Likewise, following the similar methodologies as in (56), the other CDFs, \(F_{{\text {LR}_{\text {x}_{1}}}}^{\mathrm{HD(OWR)}}\), \(F_{{\text {LR}_{\text {x}_{2}}}}^\mathrm{FD(OWR)}\), \(F_{{\text {LR}_{\text {x}_{1}}}}^{\mathrm{FD(OWR)}}\), \(F_{\text {LR}_{\text {x}_{2}}}^{\mathrm{HD(TWR)}}\), \(F_{{\text {LR}_{\text {y}_{2}}}}^{\mathrm{HD(TWR)}}\), \(F_{{\text {LR}_{\text {x}_{1}}}}^{\mathrm{HD(TWR)}}\), \(F_{{\text {LR}_{\text {y}_{1}}}}^\mathrm{HD(TWR)}\), \(F_{{\text {LR}_{\text {x}_{2}}}}^{\mathrm{FD(TWR)}}\), \(F_{\text {LR}_{\text {y}_{2}}}^{\mathrm{FD(TWR)}}\), \(F_{{\text {LR}_{\text {x}_{1}}}}^{\mathrm{FD(TWR)}}\), and \(F_{{\text {LR}_{\text {y}_{1}}}}^{\mathrm{FD(TWR)}}\) can be calculated as in (18), (19), (20), (21), (22), (23), (24), (25), (26), (27), and (28), respectively.

Appendix B: Proof of Proposition 2

Utilizing (2) and the intercept probability formulation, which is \(P _{r}\left[ C_{e}> R\right] \) [45, Eq. (5)], and also logarithm properties, following results can be obtained.

$$\begin{aligned} F_{IP_{x_{2}}}^{HD(OWR)}&=\mathrm Pr\left( \frac{\sum _{i\ne v, v=1}^{L-1}\beta _{v}\gamma _{x}}{\beta _{i}\gamma _{x}+\gamma _{F}+\gamma _{J}+1}> \gamma _{th}^{HD}\right) \nonumber \\&=\mathrm P_{r}\left( \gamma _{x}>\frac{\gamma _{th}^{HD}\left( +\gamma _{F}+\gamma _{J}+1\right) }{\left( \sum _{v=i+1}^{L-1}\beta _{v}-\gamma _{th}^{HD}\beta _{i}\right) }\right) \nonumber \\&=\int _{0}^{\infty }\int _{0}^{\frac{\gamma _{th}^{HD}\left( \gamma _{F}+\gamma _{J}+1\right) }{\left( \sum _{v=i+1}^{L-1}\beta _{v}-\gamma _{th}^{HD}\beta _{i}\right) }}\nonumber \\&\quad \times f\gamma _{x}\left( \gamma _{x}\right) f\gamma _{F}\left( \gamma _{F}\right) f\gamma _{J}\left( \gamma _{J}\right) d\gamma _{x}d\gamma _{F}d\gamma _{J}\nonumber \\&=e^{-\gamma _{th}^{HD}\left( \frac{1}{P _{s}^{1}\Omega _{h}\left( \sum _{v=i+1}^{L-1}\beta _{v}-\gamma _{th}^{HD}\beta _{i}\right) }\right) }\nonumber \\&\quad \times \int _{0}^{\infty }e^{-\gamma _{F}\left( \frac{\gamma _{th}^{HD}}{P _{s}^{1}\Omega _{h}\left( \sum _{v=i+1}^{L-1}\beta _{v}-\gamma _{th}^{HD}\beta _{i}\right) }\right) }\nonumber \\&\quad \times f_{\gamma _{F}}\left( \gamma _{F}\right) d\gamma _{F}\nonumber \\&\quad \times \int _{0}^{\infty }e^{-\gamma _{J}\left( \frac{\gamma _{th}^{HD}}{P _{s}^{1}\Omega _{h}\left( \sum _{v=i+1}^{L-1}\beta _{v}-\gamma _{th}^{HD}\beta _{i}\right) }\right) }\nonumber \\&\quad \times f_{\gamma _{J}}\left( \gamma _{J}\right) d\gamma _{J} . \end{aligned}$$
(57)

Substituting \(f_{\gamma _{F}}\left( \gamma _{F}\right) \) and \(f_{\gamma _{J}}\left( \gamma _{J}\right) \) into (57) and utilizing [46, Eq. (3.310.11)] and [46, Eq. (3.351.3)] for solving the integral expressions, the final CDF can be achieved as in (29). Note that considering the methodology as in (57), the other related CDFs, presented in Proposition 2, can be obtained.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozduran, V., Nomikos, N. On the leakage-rate performance of untrusted relay-aided NOMA under co-channel interference. Telecommun Syst 85, 67–86 (2024). https://doi.org/10.1007/s11235-023-01071-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01071-9

Keywords

Navigation