Skip to main content
Log in

BO-LCNN: butterfly optimization based lightweight convolutional neural network for remote data integrity auditing and data sanitizing model

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

With the increasing use of cloud storage for sensitive and personal information, ensuring data security has become a top priority. It is important to prevent sensitive data from being identified by unauthorized users during the distribution of cloud files. The main aim is to transmit the data in a secured manner without encrypting the entire file. Hence a novel design for remote data integrity auditing and data sanitizing that enables users to access files without revealing sensitive information. Our approach includes identity-based shared data integrity auditing, which is performed using different zero-knowledge proof protocols such as ZK-SNARK and ZK-STARK. We also propose a pinhole-imaging-based learning butterfly optimization algorithm with a lightweight convolutional neural network (PILBOA-LCNN) technique for data sanitization and security. The LCNN is used to identify sensitive terms in the document and safeguard them to maintain confidentiality. In the proposed PILBOA-LCNN technique, key extraction is a critical task during data restoration and sanitization. The PILBOA algorithm is used for key optimization during data sanitization. We evaluate the performance of our proposed model in terms of privacy preservation and document sanitization using the UPC and bus user datasets. The experimentation results revealed that the proposed method enhanced recall, F-measure, and precision scores as 90%, 89%, and 92%. It also has a low computation time of 109.2 s and 113.5 s. Our experimental results demonstrate that our proposed model outperforms existing techniques and offers improved cloud data storage privacy and accessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Code availability

Not applicable.

References

  1. Liu, W., Gao, P., Liu, Z., Chen, H., & Zhang, M. (2019). A quantum-based database query scheme for privacy preservation in cloud environment. Security and Communication Networks. https://doi.org/10.1155/2019/4923590

    Article  Google Scholar 

  2. Tian, J., Wang, H., & Wang, M. (2021). Data integrity auditing for secure cloud storage using user behavior prediction. Computers & Security, 105, 102245. https://doi.org/10.1016/j.cose.2021.102245

    Article  Google Scholar 

  3. Lakshmi, V. S., Deepthi, S., & Deepthi, P. P. (2021). Collusion resistant secret sharing scheme for secure data storage and processing over cloud. Journal of Information Security and Applications, 60, 102869. https://doi.org/10.1016/j.jisa.2021.102869

    Article  Google Scholar 

  4. Pandey, A. K., Khan, A. I., Abushark, Y. B., Alam, M. M., Agrawal, A., Kumar, R., & Khan, R. A. (2020). Key issues in healthcare data integrity: Analysis and recommendations. IEEE Access, 8, 40612–40628. https://doi.org/10.1109/ACCESS.2020.2976687

    Article  Google Scholar 

  5. Zhang, R., Xue, R., & Liu, L. (2021). Security and privacy for healthcare blockchains. IEEE Transactions on Services Computing, 15(6), 3668–3686. https://doi.org/10.1109/TSC.2021.3085913

    Article  Google Scholar 

  6. Xu, S., Ning, J., Ma, J., Xu, G., Yuan, J., & Deng, R. H. (2021). Revocable policy-based chameleon hash. European symposium on research in computer security (pp. 327–347). Springer.

    Google Scholar 

  7. Xu, Z., Luo, M., Kumar, N., Vijayakumar, P., & Li, L. (2020). Privacy-protection scheme based on sanitizable signature for smart mobile medical scenarios. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2020/8877405

    Article  Google Scholar 

  8. Awotunde, J. B., Jimoh, R. G., Folorunso, S. O., Adeniyi, E. A., Abiodun, K. M., & Banjo, O. O. (2021). Privacy and security concerns in IoT-based healthcare systems. In The fusion of internet of things, artificial intelligence, and cloud computing in health care (pp. 105–134). Springer. https://doi.org/10.1007/978-3-030-75220-0_6

  9. Al-Turjman, F., Nawaz, M. H., & Ulusar, U. D. (2020). Intelligence in the Internet of Medical Things era: A systematic review of current and future trends. Computer Communications, 150, 644–660. https://doi.org/10.1016/j.comcom.2019.12.030

    Article  Google Scholar 

  10. Yin, B., Yin, H., Wu, Y., & Jiang, Z. (2020). FDC: A secure federated deep learning mechanism for data collaborations in the Internet of Things. IEEE Internet of Things Journal, 7(7), 6348–6359. https://doi.org/10.1109/JIOT.2020.2966778

    Article  Google Scholar 

  11. Assiri, A. S. (2021). On the performance improvement of butterfly optimization approaches for global optimization and feature selection. PLoS ONE, 16(1), 0242612. https://doi.org/10.1371/journal.pone.0242612

    Article  CAS  Google Scholar 

  12. Sharma, S., Saha, A. K., Majumder, A., & Nama, S. (2021). MPBOA-A novel hybrid butterfly optimization algorithm with symbiosis organisms search for global optimization and image segmentation. Multimedia Tools and Applications, 80, 12035–12076. https://doi.org/10.1007/s11042-020-10053-x

    Article  Google Scholar 

  13. Fadaee, M., Mahdavi-Meymand, A., & Zounemat-Kermani, M. (2022). Suspended sediment prediction using integrative soft computing models: On the analogy between the butterfly optimization and genetic algorithms. Geocarto International, 37(4), 961–977. https://doi.org/10.1080/10106049.2020.1753821

    Article  Google Scholar 

  14. Arora, S., & Singh, S. (2019). Butterfly optimization algorithm: A novel approach for global optimization. Soft Computing, 23, 715–734. https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  15. Sharma, S., Saha, A. K., Roy, S., Mirjalili, S., & Nama, S. (2022). A mixed sine cosine butterfly optimization algorithm for global optimization and its application. Cluster Computing. https://doi.org/10.1007/s10586-022-03649-5

    Article  Google Scholar 

  16. Kusuma, P. D., & Dinimaharawati, A. (2023). Three on three optimizer: A new metaheuristic with three guided searches and three random searches. International Journal of Advanced Computer Science and Applications, 14, 1.

    Article  Google Scholar 

  17. Sharma, S., Saha, A. K., & Lohar, G. (2021). Optimization of weight and cost of cantilever retaining wall by a hybrid metaheuristic algorithm. Engineering with Computers. https://doi.org/10.1007/s00366-021-01294-x

    Article  Google Scholar 

  18. Long, W., Jiao, J., Liang, X., Wu, T., Xu, M., & Cai, S. (2021). Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection. Applied Soft Computing, 103, 107146. https://doi.org/10.1016/j.asoc.2021.107146

    Article  Google Scholar 

  19. Chouhan, V., Peddoju, S. K., & Buyya, R. (2022). dualDup: A secure and reliable cloud storage framework to deduplicate the encrypted data and key. Journal of Information Security and Applications, 69, 103265. https://doi.org/10.1016/j.jisa.2022.103265

    Article  Google Scholar 

  20. Annie Alphonsa, M. M., & Amudhavalli, P. (2018). Genetically modified glowworm swarm optimization based privacy preservation in cloud computing for healthcare sector. Evolutionary Intelligence, 11(1), 101–116. https://doi.org/10.1007/s12065-018-0162-4

    Article  Google Scholar 

  21. Fan, Y., Lin, X., Tan, G., Zhang, Y., Dong, W., & Lei, J. (2019). One secure data integrity verification scheme for cloud storage. Future Generation Computer Systems, 96, 376–385. https://doi.org/10.1016/j.future.2019.01.054

    Article  Google Scholar 

  22. Bebe, P.C., & Akila, D. (2021). Bloom hash probabilistic data structure and Benaloh cryptosystem for secured data storage and access control in the cloud. Materials Today: Proceedings.

  23. Pareek, G., & Purushothama, B. R. (2021). KAPRE: Key-aggregate proxy re-encryption for secure and flexible data sharing in cloud storage. Journal of Information Security and Applications, 63, 103009. https://doi.org/10.1016/j.jisa.2021.103009

    Article  Google Scholar 

  24. Megouache, L., Zitouni, A., & Djoudi, M. (2020). Ensuring user authentication and data integrity in a multi-cloud environment. Human-Centric Computing and Information Sciences, 10(1), 1–20. https://doi.org/10.1186/s13673-020-00224-y

    Article  Google Scholar 

  25. Ghalambaz, M., Yengejeh, R. J., & Davami, A. H. (2021). Building energy optimization using grey wolf optimizer (GWO). Case Studies in Thermal Engineering, 27, 101250. https://doi.org/10.1016/j.csite.2021.101250

    Article  Google Scholar 

  26. Ghalambaz, M., Jalilzadeh, Y. R., & Davami, A. H. (2022). Building energy optimization using butterfly optimization algorithm. Thermal Science, 26(5), 3975–3986. https://doi.org/10.2298/TSCI210402306G

    Article  Google Scholar 

  27. Hosseinzadeh, M., Masdari, M., Rahmani, A. M., Mohammadi, M., Aldalwie, A. H. M., Majeed, M. K., & Karim, S. H. T. (2021). Improved butterfly optimization algorithm for data placement and scheduling in edge computing environments. Journal of Grid Computing, 19, 1–27. https://doi.org/10.1007/s10723-021-09556-0

    Article  Google Scholar 

  28. Sadeghian, Z., Akbari, E., & Nematzadeh, H. (2021). A hybrid feature selection method based on information theory and binary butterfly optimization algorithm. Engineering Applications of Artificial Intelligence, 97, 104079. https://doi.org/10.1016/j.engappai.2020.104079

    Article  Google Scholar 

  29. Singh, B., & Anand, P. (2018). A novel adaptive butterfly optimization algorithm. International Journal of Computational Materials Science and Engineering, 7(04), 1850026.

    Article  Google Scholar 

  30. Sharma, T. K., Sahoo, A. K., & Goyal, P. (2021). Bidirectional butterfly optimization algorithm and engineering applications. Materials Today: Proceedings, 34, 736–741. https://doi.org/10.1016/j.matpr.2020.04.679

    Article  Google Scholar 

  31. Sharma, S., & Saha, A. K. (2020). m-MBOA: A novel butterfly optimization algorithm enhanced with mutualism scheme. Soft Computing, 24, 4809–4827.

    Article  Google Scholar 

  32. Sharma, S., Khodadadi, N., Saha, A. K., Gharehchopogh, F. S., & Mirjalili, S. (2023). Non-dominated sorting advanced butterfly optimization algorithm for multi-objective problems. Journal of Bionic Engineering, 20(2), 819–843. https://doi.org/10.1007/s42235-022-00288-9

    Article  Google Scholar 

  33. Sharma, S., Chakraborty, S., Saha, A. K., Nama, S., & Sahoo, S. K. (2022). mLBOA: A modified butterfly optimization algorithm with lagrange interpolation for global optimization. Journal of Bionic Engineering, 19(4), 1161–1176. https://doi.org/10.1007/s42235-022-00175-3

    Article  Google Scholar 

  34. Ali, A., Almaiah, M. A., Hajjej, F., Pasha, M. F., Fang, O. H., Khan, R., Teo, J., & Zakarya, M. (2022). An industrial IoT-based blockchain-enabled secure searchable encryption approach for healthcare systems using neural network. Sensors, 22(2), 572. https://doi.org/10.3390/s22020572

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ali, A., Rahim, H. A., Pasha, M. F., Dowsley, R., Masud, M., Ali, J., & Baz, M. (2021). Security, privacy, and reliability in digital healthcare systems using blockchain. Electronics, 10(16), 2034.

    Article  Google Scholar 

  36. Almaiah, M. A., Ali, A., Hajjej, F., Pasha, M. F., & Alohali, M. A. (2022). A lightweight hybrid deep learning privacy preserving model for FC-based industrial internet of medical things. Sensors, 22(6), 2112. https://doi.org/10.3390/s22062112

    Article  PubMed  PubMed Central  Google Scholar 

  37. Almaiah, M. A., Hajjej, F., Ali, A., Pasha, M. F., & Almomani, O. (2022). A novel hybrid trustworthy decentralized authentication and data preservation model for digital healthcare IoT based CPS. Sensors, 22(4), 1448.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Devi, K. G., & Devi. R. R. (2021). S2OPE security: Shuffle standard onetime padding encryption for improving secured data storage in decentralized cloud environment. Materials Today: Proceedings.

  39. Zhang, X., Xu, C., Zhang, Y., & Jin, C. (2017). Efficient integrity verification scheme for medical data records in cloud-assisted wireless medical sensor networks. Wireless Personal Communications, 96(2), 1819–1833. https://doi.org/10.1007/s11277-017-4270-8

    Article  Google Scholar 

  40. Shen, W., Qin, J., Yu, J., Hao, R., & Hu, J. (2018). Enabling identity-based integrity auditing and data sharing with sensitive information hiding for secure cloud storage. IEEE Transactions on Information Forensics and Security, 14(2), 331–346. https://doi.org/10.1109/TIFS.2018.2850312

    Article  Google Scholar 

  41. Titus, O. J. (2022). Zero-knowledge proof and its application in enforcing scalability and data integrity on Blockchain. Medium. Retrieved September 27, 2022, from https://medium.com/carthago/zero-knowledge-proof-and-its-application-in-enforcing-scalability-and-data-integrity-on-blockchain-783253d27ecb

  42. Zhang, F., Fan, X., Lei, X., Wu, J., Song, J., Huang, J., Guo, J., & Tong, C. (2020). Zero knowledge proofs for cloud storage integrity checking. In 2020 39th Chinese control conference (CCC) (pp. 7661–7668). IEEE. https://doi.org/10.23919/CCC50068.2020.9189231

  43. Xie, J., Zhu, M., Hu, K., Zhang, J., Hines, H., & Guo, Y. (2022). Frog calling activity detection using lightweight CNN with multi-view spectrogram: A case study on kroombit tinker frog. Machine Learning with Applications, 7, 100202. https://doi.org/10.1016/j.mlwa.2021.100202

    Article  Google Scholar 

  44. Tubishat, M., Alswaitti, M., Mirjalili, S., Al-Garadi, M. A., & Rana, T. A. (2020). Dynamic butterfly optimization algorithm for feature selection. IEEE Access, 8, 194303–194314. https://doi.org/10.1109/ACCESS.2020.3033757

    Article  Google Scholar 

  45. Goldanloo, M. J., & Gharehchopogh, F. S. (2022). A hybrid OBL-based firefly algorithm with symbiotic organisms search algorithm for solving continuous optimization problems. The Journal of Supercomputing, 78(3), 3998–4031.

    Article  Google Scholar 

  46. Ye, T., Wang, H., Wang, W., Zeng, T., Zhang, L., & Huang, Z. (2022). Artificial bee colony algorithm with an adaptive search manner and dimension perturbation. Neural Computing and Applications, 34(19), 16239–16253. https://doi.org/10.1007/s00521-022-06981-4

    Article  Google Scholar 

  47. Xue, Y., Tang, T., & Liu, A. X. (2019). Large-scale feedforward neural network optimization by a self-adaptive strategy and parameter based particle swarm optimization. IEEE Access, 7, 52473–52483. https://doi.org/10.1109/ACCESS.2019.2911530

    Article  Google Scholar 

  48. Iwendi, C., Moqurrab, S. A., Anjum, A., Khan, S., Mohan, S., & Srivastava, G. (2020). N-sanitization: A semantic privacy-preserving framework for unstructured medical datasets. Computer Communications, 161, 160–171. https://doi.org/10.1016/j.comcom.2020.07.032

    Article  Google Scholar 

  49. Lekshmy, P. L., & Rahiman, M. A. (2020). A sanitization approach for privacy preserving data mining on social distributed environment. Journal of Ambient Intelligence and Humanized Computing, 11(7), 2761–2777. https://doi.org/10.1007/s12652-019-01335-w

    Article  Google Scholar 

  50. Ahamad, D., Hameed, S. A., & Akhtar, M. (2022). A multi-objective privacy preservation model for cloud security using hybrid Jaya-based shark smell optimization. Journal of King Saud University-Computer and Information Sciences, 34, 2343–2358.

    Article  Google Scholar 

  51. Fatima, R. (2019). User privacy concerns extracted from research literature. Mendeley Data. Retrieved September 27, 2022, from https://data.mendeley.com/datasets/fxxjvj4z3g

  52. (2021). Jeju Special Self-Governing Province_Bus user information by daily route. https://www.data.go.kr/en/data/15074260/openapi.do

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors agreed on the content of the study. JFB and BJC collected all the data for analysis. JFB agreed on the methodology. JFB and BJC completed the analysis based on agreed steps. Results and conclusions are discussed and written together. The author read and approved the final manuscript.

Corresponding author

Correspondence to B. Judy Flavia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flavia, B.J., Chelliah, B.J. BO-LCNN: butterfly optimization based lightweight convolutional neural network for remote data integrity auditing and data sanitizing model. Telecommun Syst 85, 623–647 (2024). https://doi.org/10.1007/s11235-023-01096-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01096-0

Keywords

Navigation