Skip to main content
Log in

Maximizing throughput and energy efficiency in 6G based on phone user clustering enabled UAV assisted downlink hybrid multiple access HetNet

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The surge in technology is driving demands for real-time interactive applications and high-speed transmissions, necessitating improved network throughput and energy efficiency (EE) for immersive experiences. The rise in industrial automation has led to higher connectivity needs, straining fifth-generation networks. Sixth-generation networks aim to address these demands, potentially maximizing throughput and EE through enhanced coverage. This paper introduces innovative techniques like phone user clustering-based downlink hybrid multiple access in unmanned aerial vehicle-assisted heterogeneous networks (HetNets) to jointly optimize phone user (PU) admission, cell association, throughput, and EE while ensuring PU fair association with cell (PUFAC) and quality of service (QoS), i.e., minimum rate requirement of PUs. An outer approximation algorithm solves the mixed integer non-linear programming (MINLP) optimization problem arising from the transformation of the concave fractional programming optimization problem using the Charnes-Cooper transformation. The method’s effectiveness is assessed, showcasing its superiority over existing macro-cell-only networks and HetNets concerning throughput, EE, PU admission, PU-cell association, PUFAC, and QoS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. López-Pérez, D., De Domenico, A., Piovesan, N., Xinli, G., Bao, H., Qitao, S., & Debbah, M. (2022). A survey on 5g radio access network energy efficiency: Massive mimo, lean carrier design, sleep modes, and machine learning. IEEE Communications Surveys & Tutorials, 24(1), 653–697.

    Article  Google Scholar 

  2. Larsen, L. M., Christiansen, H. L., Ruepp, S., & Berger, M. S. (2023). Toward greener 5G and beyond radio access networks-a survey. IEEE Open Journal of the Communications Society, 4, 768–797.

    Article  Google Scholar 

  3. Khanh, Q. V., Chehri, A., Quy, N. M., Han, N. D., & Ban, N. T. (2023). “Innovative trends in the 6g era: A comprehensive survey of architecture, applications, technologies, and challenges,” IEEE Access.

  4. Ansere, J. A., Kamal, M., Khan, I. A., & Aman, M. N. (2023). Dynamic resource optimization for energy-efficient 6G-IoT ecosystems. Sensors, 23(10), 4711.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Sundan, A. P., Jha, R. K., & Gupta, A. (2020). Energy and spectral efficiency optimization using probabilistic based spectrum slicing (PBSS) in different zones of 5G wireless communication network. Telecommunication Systems, 73(1), 59–73.

    Article  Google Scholar 

  6. Beshley, M., Kryvinska, N., & Beshley, H. (2022). Energy-efficient GOE-driven radio resource management method for 5G and beyond networks. IEEE Access, 10, 131691–131710.

    Article  Google Scholar 

  7. Gupta, A., & Jha, R. K. (2020). Power optimization with low complexity using scaled beamforming approach for a massive MIMO and small cell scenario. Wireless Networks, 26(2), 1165–1176.

    Article  Google Scholar 

  8. Hmidi, K., Najeh, S., & Bouallegue, A. (2023). Power control approach in hetnets based-qlearning technique. In: International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2023, 1184–1189.

  9. Gupta, A., & Jha, R. K. (2017). Power optimization using optimal small cell arrangements in different deployment scenarios. International Journal of Communication Systems, 30(13), e3279.

    Article  Google Scholar 

  10. Shen, L., Wang, N., Zhang, D., Chen, J., Mu, X., & Wong, K. M. (2022). Energy-aware dynamic trajectory planning for UAV-enabled data collection in MMTC networks. IEEE Transactions on Green Communications and Networking, 6(4), 1957–1971.

    Article  Google Scholar 

  11. Jha, K., Gupta, A., Alabdulatif, A., Tanwar, S., Safirescu, C. O., & Mihaltan, T. C. (2022). CSVAG: Optimizing vertical handoff using hybrid cuckoo search and genetic algorithm-based approaches. Sustainability, 14(14), 8547.

    Article  Google Scholar 

  12. Su, Y., Pang, X., Chen, S., Jiang, X., Zhao, N., & Yu, F. R. (2022). Spectrum and energy efficiency optimization in IRS-assisted UAV networks. IEEE Transactions on Communications, 70(10), 6489–6502.

    Article  Google Scholar 

  13. Wu, Y., Liu, S., Lin, X., & Sun, L. (2023). Energy-efficiency optimization-based user selection and power allocation for uplink noma-enabled iot networks. In: 2023 IEEE 12th International Conference on Educational and Information Technology (ICEIT). IEEE, pp 321–325.

  14. Ghafoor, U., Ali, M., Khan, H. Z., Siddiqui, A. M., Naeem, M., & Rashid, I., (2021). Energy efficiency optimization for hybrid noma based beyond 5g heterogeneous networks. In: IEEE 94th Vehicular Technology Conference (VTC2021-Fall). IEEE, 2021, pp. 1–5.

  15. Jain, P., Gupta, A., Kumar, N., Joshi, G. P., & Cho, W. (2022). Performance evaluation of cooperative OMA and NOMA systems in 6g deployment scenarios. Sensors, 22(11), 3986.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. Mukherjee, P., & De, T. (2023). Energy aware cluster head rotation for D2D multicasting. In: 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, pp. 840–845.

  17. Prasad, L. C., Kamatham, Y., Sunehra, D. (2022). An energy efficient fuzzy level clustering for stable communications in cognitive sensor networks. In: 2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON). IEEE, pp. 1–6.

  18. Zhang, T., Zhu, K., Wang, J., & Han, Z. (2021). Cost-efficient beam management and resource allocation in millimeter wave backhaul hetnets with hybrid energy supply. IEEE Transactions on Wireless Communications, 21(5), 3291–3306.

    Article  Google Scholar 

  19. Beshley, M., Kryvinska, N., & Beshley, H. (2022). Energy-efficient GOE-driven radio resource management method for 5G and beyond networks. IEEE Access, 10, 131691–131710.

    Article  Google Scholar 

  20. Qin, P., Fu, Y., Feng, X., Zhao, X., Wang, S., & Zhou, Z. (2021). Energy-efficient resource allocation for parked-cars-based cellular-v2v heterogeneous networks. IEEE Internet of Things Journal, 9(4), 3046–3061.

    Article  Google Scholar 

  21. Xiao, H., Zhang, W., & Chronopoulos, A. T. (2022). Joint subchannel and power allocation for energy efficiency optimization in NOMA heterogeneous networks with energy harvesting. IEEE Systems Journal, 16(3), 4904–4915.

    Article  ADS  Google Scholar 

  22. Fall, M., Balboul, Y., Fattah, M., Mazer, S., El Bekkali, M., & Kora, A. D. (2023). Towards sustainable 5G networks: A proposed coordination solution for macro and pico cells to optimize energy efficiency. IEEE Access.

  23. Cao, Y., Wang, A., Sun, G., & Liu, L. (2023). Average transmission rate and energy efficiency optimization in uav-assisted IoT. In: . IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2023, pp. 1–6.

  24. Oh, J., Lim, D.-w., Kang, K.-m. (2022). Energy efficiency improvement rate for low power UAV identification environment. In: 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). IEEE, pp. 2139–2141.

  25. Ma, X., Na, Z., Lin, B., & Liu, L. (2022). Energy efficiency optimization of uav-assisted wireless powered systems for dependable data collections in internet of things. IEEE Transactions on Reliability.

  26. Shen, L., Wang, N., Zhang, D., Chen, J., Mu, X., & Wong, K. M. (2022). Energy-aware dynamic trajectory planning for UAV-enabled data collection in MMTC networks. IEEE Transactions on Green Communications and Networking, 6(4), 1957–1971.

    Article  Google Scholar 

  27. Dai, X., Duo, B., Yuan, X., & Tang, W. (2022). Energy-efficient UAV communications: A generalized propulsion energy consumption model. IEEE Wireless Communications Letters, 11(10), 2150–2154.

    Article  Google Scholar 

  28. Xiao, H., Jiang, H., Deng, L.-P., Luo, Y., & Zhang, Q.-Y. (2022). Outage energy efficiency maximization for UAV-assisted energy harvesting cognitive radio networks. IEEE Sensors Journal, 22(7), 7094–7105.

    Article  ADS  Google Scholar 

  29. Baştürk, İ. (2021). Energy-efficiency maximization for multi-antenna ofdma networks. In: 29th Signal Processing and Communications Applications Conference (SIU). IEEE, 2021, 1–4.

  30. Mo, X., & Xu, J. (2021). Energy-efficient federated edge learning with joint communication and computation design. Journal of Communications and Information Networks, 6(2), 110–124.

    Article  Google Scholar 

  31. Abd-Elnaby, M., Sedhom, G. G., El-Rabaie, E.-S.M., & Elwekeil, M. (2022). An optimum weighted energy efficiency approach for low complexity power allocation in downlink NOMA. IEEE Access, 10, 80667–80679.

    Article  Google Scholar 

  32. Islam, D. M. S., Das, N., Uddin, M. F. (2022). Energy efficiency analysis of FSO backhauled uplink noma system. In: 2022 25th International Conference on Computer and Information Technology (ICCIT). IEEE, pp. 159–163.

  33. Katwe, M., Singh, K., Sharma, P. K., & Li, C.-P. (2021). Energy efficiency maximization for UAV-assisted full-duplex NOMA system: User clustering and resource allocation. IEEE Transactions on Green Communications and Networking, 6(2), 992–1008.

    Article  Google Scholar 

  34. Mahady, I. A., Bedeer, E., Ikki, S., & Yanikomeroglu, H. (2022). Energy efficiency maximization of full-duplex NOMA systems with improper gaussian signaling under imperfect self-interference cancellation. IEEE Communications Letters, 26(7), 1613–1617.

    Article  Google Scholar 

  35. Thi, H. N., Kieu, T. X., Truong, L. H., & Le Thi, A. (2023). Resource allocation for noma, IRS network with energy harvesting in presence of hardware impairment. In: IEEE 3rd International Conference in Power Engineering Applications (ICPEA). IEEE, Vol. 2023, pp. 169–174.

  36. Kumar, M. H., Sharma, S., Deka, K., & Thottappan, M. (2022). Reconfigurable intelligent surfaces assisted hybrid NOMA system. IEEE Communications Letters, 27(1), 357–361.

    Article  Google Scholar 

  37. Cao, S., & Hou, F. (2022). On the maximum energy efficiency of random access-based OMA and NOMA in multirate environment. IEEE Transactions on Wireless Communications, 21(12), 10438–10454.

    Article  Google Scholar 

  38. Venkatesh, T., & Chakravarthi, R. (2022). An energy efficient algorithm in manet using monarch butterfly optimization and cluster head load distribution. In: 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). IEEE, pp. 1–5.

  39. Prasad, L. C., Kamatham, Y., & Sunehra, D. (2022). An energy efficient clustering and relay selection scheme for cognitive radio sensor networks. In: 2022 International Conference on Innovations in Science and Technology for Sustainable Development (ICISTSD). IEEE, pp. 30–35.

  40. Alhashimi, H. F., Hindia, M. N., Dimyati, K., Hanafi, E. B., Safie, N., Qamar, F., Azrin, K., & Nguyen, Q. N. (2023). A survey on resource management for 6g heterogeneous networks: Current research, future trends, and challenges. Electronics, 12(3), 647.

    Article  Google Scholar 

  41. Puspitasari, A. A., An, T. T., Alsharif, M. H., & Lee, B. M. (2023). Emerging technologies for 6G communication networks: Machine learning approaches. Sensors, 23(18), 7709.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Goldsmith, A. (2005). Wireless communications. Cambridge university press.

  43. Khan, H. Z., Ali, M., Naeem, M., Rashid, I., Siddiqui, A. M., Imran, M., & Mumtaz, S. (2020). Joint admission control, cell association, power allocation and throughput maximization in decoupled 5g heterogeneous networks. Telecommunication Systems, pp. 1–14.

  44. Ali, Z. J., Noordin, N. K., Sali, A., Hashim, F., & Balfaqih, M. (2020). Novel resource allocation techniques for downlink non-orthogonal multiple access systems. Applied Sciences, 10(17), 5892.

    Article  CAS  Google Scholar 

  45. Rajoria, S., Trivedi, A., & Godfrey, W. W. (2021). Sum-rate optimization for NOMA based two-tier hetnets with massive MIMO enabled wireless backhauling. AEU-International Journal of Electronics and Communications, 132, 153626.

    Google Scholar 

  46. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (noma) for cellular future radio access. In: IEEE 77th vehicular technology conference (VTC Spring). IEEE, Vol. 2013, pp. 1–5.

  47. Moltafet, M., Azmi, P., Mokari, N., Javan, M. R., & Mokdad, A. (2018). Optimal and fair energy efficient resource allocation for energy harvesting-enabled-PD-NOMA-based hetnets. IEEE Transactions on Wireless Communications, 17(3), 2054–2067.

    Article  Google Scholar 

  48. Tomida, S., & Higuchi, K. (2011). Non-orthogonal access with sic in cellular downlink for user fairness enhancement. In: International symposium on intelligent signal processing and communications systems (ISPACS). IEEE, Vol. 2011, pp. 1–6.

  49. Xie, H., & Xu, Y. (2022). Robust resource allocation for NOMA-assisted heterogeneous networks. Digital Communications and Networks, 8(2), 208–214.

    Article  Google Scholar 

  50. Han, T., Gong, J., Liu, X., Islam, S.R., Li, Q., Bai, Z., & Kwak, K. S. (2018). On downlink noma in heterogeneous networks with non-uniform small cell deployment. IEEE Access, Vol. 6, pp. 31 099–31 109.

  51. Fletcher, R., & Leyffer, S. (1994). Solving mixed integer nonlinear programs by outer approximation. Mathematical programming, 66(1–3), 327–349.

    Article  MathSciNet  Google Scholar 

  52. Duran, M. A., & Grossmann, I. E. (1986). An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Mathematical programming, 36, 307–339.

    Article  MathSciNet  Google Scholar 

  53. Khan, H. Z., Ali, M., Naeem, M., Rashid, I., Siddiqui, A. M., Imran, M., & Mumtaz, S. (2020). Resource allocation and throughput maximization in decoupled 5G. In: IEEE wireless communications and networking conference (wcnc). IEEE, Vol. 2020, pp. 1–6.

  54. Floudas, C. A. & Pardalos, P. M. (2008). Encyclopedia of optimization. Springer Science & Business Media.

  55. Pistikopoulos, E. N. (1998). Ca floudas, nonlinear and mixed-integer optimization. fundamentals and applications.

  56. Land, A. H. & Doig, A. G. (2010). An automatic method for solving discrete programming problems. Springer.

  57. Bonami, P. (2011). Lift-and-project cuts for mixed integer convex programs. In: Integer Programming and Combinatoral Optimization: 15th International Conference, IPCO. (2011). New York, NY, USA, June 15–17, Proceedings 15. Springer, 2011, 52–64.

  58. Bharany, S., Sharma, S., Alsharabi, N., Tag Eldin, E., & Ghamry, N. A. (2023). Energy-efficient clustering protocol for underwater wireless sensor networks using optimized glowworm swarm optimization. Frontiers in Marine Science, 10, 1117787.

    Article  Google Scholar 

  59. Kulmar, M., Müürsepp, I., & Alam, M. M. (2023). Heuristic radio access network subslicing with user clustering and bandwidth subpartitioning. Sensors, 23(10), 4613.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  60. Taneja, A., Saluja, N., Taneja, N., Alqahtani, A., Elmagzoub, M., Shaikh, A., & Koundal, D. (2022). Power optimization model for energy sustainability in 6g wireless networks. Sustainability, 14(12), 7310.

    Article  Google Scholar 

  61. Beitollahi, M., & Lu, N. (2022). Multi-frame scheduling for federated learning over energy-efficient 6g wireless networks. In: IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, pp. 1–6.

  62. Imoize, A. L., Obakhena, H. I., Anyasi, F. I., & Sur, S. N. (2022). A review of energy efficiency and power control schemes in ultra-dense cell-free massive MIMO systems for sustainable 6G wireless communication. Sustainability, 14(17), 11100.

    Article  Google Scholar 

  63. Nurcahyani, I., & Lee, J. W. (2021). Role of machine learning in resource allocation strategy over vehicular networks: A survey. Sensors, 21(19), 6542.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  64. Fernando, X., & Lăzăroiu, G. (2023). Spectrum sensing, clustering algorithms, and energy-harvesting technology for cognitive-radio-based internet-of-things networks. Sensors, 23(18), 7792.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  65. Mohsan, S. A. H., Othman, N. Q. H., Li, Y., Alsharif, M. H., & Khan, M. A. (2023). Unmanned aerial vehicles (UAVS): Practical aspects, applications, open challenges, security issues, and future trends. Intelligent Service Robotics, 16(1), 109–137.

    PubMed  PubMed Central  Google Scholar 

  66. Arafat, M. Y., Alam, M. M., & Moh, S. (2023). Vision-based navigation techniques for unmanned aerial vehicles: Review and challenges. Drones, 7(2), 89.

    Article  Google Scholar 

  67. Zear, A., & Ranga, V. (2022). UAVS assisted network partition detection and connectivity restoration in wireless sensor and actor networks. Ad Hoc Networks, 130, 102823.

  68. Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9(3–4), 181–186.

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

A author wrote main manuscript, prepared figures, and conduct simulations. A and B authors reviewed the manuscript.

Corresponding author

Correspondence to Umar Ghafoor.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Fractional programing and Charnes Cooper transformation

Fractional programme (FP) contains objective function as a ratio of two nonlinear functions generally. A FP is defined as

$$\begin{aligned} \begin{aligned}&\max _{t \in S} \frac{j(t)}{k(t)}\\ \text {subject to}&\\&C1: g_{n}(t)\le 0 \\ \end{aligned} \end{aligned}$$
(42)

where j(t), k(t) and \(g_{n}(t)\) (where \(n= 1,2,...,N\)) are defined on set \(S \subset R^{t}\), having real values. In (42), if j(t) is positive and concave, k(t) is positive and convex, assuming S is convex set, then FP is called CFP. CCT [68] use following variable transformations to reduce a CFP to a concave programme.

$$\begin{aligned}{} & {} w=\frac{t}{k(t)} \end{aligned}$$
(43)
$$\begin{aligned}{} & {} \quad z=\frac{1}{k(t)} \end{aligned}$$
(44)

The equivalent concave problem for (42) can be written as

$$\begin{aligned} \begin{aligned}&\max _{\frac{w}{z} \in S} z j_{o}\frac{w}{z}\\ \text {subject to}&\\&C1: zk(\frac{w}{z})=1, \\&C2: zg_{n}(\frac{w}{z})\le 0, \forall \hspace{4pt} n= 1,2,3,...,N. \\\\ \end{aligned} \end{aligned}$$
(45)

Problem in (42) can have optimal solution if and only if problem in (45) have optimal solution.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafoor, U., Ashraf, T. Maximizing throughput and energy efficiency in 6G based on phone user clustering enabled UAV assisted downlink hybrid multiple access HetNet. Telecommun Syst 85, 563–590 (2024). https://doi.org/10.1007/s11235-024-01101-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-024-01101-0

Keywords

Navigation