Skip to main content
Log in

Quality-aware data abstraction layer for collaborative 2-tier sensor network applications

  • Published:
Real-Time Systems Aims and scope Submit manuscript

Abstract

This paper presents PRIDE, a novel data abstraction layer for collaborative 2-tier sensor network applications. PRIDE, more specifically, targets distributed real-time applications, in which multiple collaborative mobile devices have to analyze a global situation by collecting and managing data streams from massive underlying sensors. PRIDE at these devices hides the details of underlying sensors and provides transparent, timely, and robust access to global sensor data under highly dynamic and unpredictable environments of emerging sensor network applications. For transparent and efficient sharing of global sensor data, a model-based predictive replication mechanism is proposed and integrated into a conventional data management system that supports diverse types of spatial and temporal queries. In addition, for robust and timely query processing, the predictive replication scheme is extended to the problem of guaranteeing Quality-of-Service (QoS) by introducing feedback control of the accuracy bounds of models. We show the viability of the proposed solution by implementing and evaluating it on a 2-tier sensor network testbed, emulating collaborative search-and-rescue tasks with realistic workloads. Our evaluation results demonstrate that PRIDE can achieve timely sensor data sharing among a large number of devices in a highly robust and controlled manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Algorithm 2
Fig. 4
Fig. 5
Algorithm 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Note that the data structures for the snapshot such as indexes are also updated when the value of the snapshot is updated.

  2. The minimum footprint of PRIDE including Berkeley DB is 540 KB.

  3. Maemo is based on GNU/Linux 2.6.21 kernel and compliant with POSIX standards.

  4. Real-time queries for firefighters can be invoked on a per-second basis (Jiang et al. 2004).

  5. The confidence interval bars are shown in the graphs.

  6. PRIDE is representative of approaches exploiting models including PRESTO and PRIDE + PRESTO. Hence, we only show the result of PRIDE.

  7. In the simulated scenario, the observed temperatures are exploited to make the real-time prediction on fire and smoke flows, and hence high precision bound, such as below 10 °C, can be tolerated. To achieve higher data accuracy in different scenarios, the timeliness can be traded as shown in Sect. 6.4.

References

  • Communication and networking technologies for public safety (2008) National Institute of Standards and Technology. http://w3.antd.nist.gov/comm_net_ps.shtml

  • Fire growth and smoke transport modeling with CFAST (2008). http://fast.nist.gov/

  • Fire information and rescue equipment (FIRE) project (2008). http://fire.me.berkeley.edu/

  • Nokia N-series (2008). http://www.nseries.com/

  • Oracle Berkeley DB (2008). http://www.oracle.com

  • IEEE portable applications (2009). http://standards.ieee.org/regauth/posix

  • Abbasi AA, Younis M (2007) A survey on clustering algorithms for wireless sensor networks. Comput Commun 30:2826–2841

    Article  Google Scholar 

  • Abdelzaher T, Blum B, Cao Q, Chen Y, Evans D, George J, George S, Gu L, He T, Krishnamurthy S, Luo L, Son S, Stankovic J, Stoleru R, Wood A (2004) Envirotrack: towards an environmental computing paradigm for distributed sensor networks. In: Proceedings of the 24th international conference on distributed computing systems (ICDCS’04)

    Google Scholar 

  • Ahn GS, Hong SG, Miluzzo E, Campbell AT, Cuomo F (2006) Funneling-mac: a localized, sink-oriented mac for boosting fidelity in sensor networks. In: Proceedings of the 4th international conference on embedded networked sensor systems (SenSys ’06)

    Google Scholar 

  • Akyildiz I, Wang X (2005) A survey on wireless mesh networks. IEEE Commun Mag 43(9):S23–S30

    Article  Google Scholar 

  • Amirijoo M, Hansson J, Son SH (2006) Specification and management of QoS in real-time databases supporting imprecise computations. IEEE Trans Comput 55(3):304–319

    Article  Google Scholar 

  • Bonnet P, Gehrke J, Seshadri P (2001) Towards sensor database systems. In: Proceedings of the second international conference on mobile data management (MDM ’01)

    Google Scholar 

  • Cook SA, Pachl JK, Pressman IS (2002) The optimal location of replicas in a network using a read-one-write-all policy. Distrib Comput 15(1):57–66

    Article  Google Scholar 

  • Deshpande A, Guestrin C, Madden SR, Hellerstein JM, Hong W (2004) Model-driven data acquisition in sensor networks. In: Proceedings of the 30th VLDB conference, Toronto, Canada

    Google Scholar 

  • Deshpande A, Madden S (2006) Mauvedb: supporting model-based user views in database systems. In: Proceedings of the 2006 ACM SIGMOD international conference on management of data (SIGMOD ’06). ACM, New York, pp 73–84

    Chapter  Google Scholar 

  • Desnoyers P, Ganesan D, Shenoy P (2005) TSAR: a two tier sensor storage architecture using interval skip graphs. In: Proceedings of the 3rd international conference on embedded networked sensor systems (SenSys ’05)

    Google Scholar 

  • Fall K (2003) A delay-tolerant network architecture for challenged Internets. In: Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications (SIGCOMM ’03), pp 27–34

    Chapter  Google Scholar 

  • Fife LD, Gruenwald L (2003) Research issues for data communication in mobile ad-hoc network database systems. SIGMOD Rec 32:42–47

    Article  Google Scholar 

  • Gelb A (ed) (1974) Applied optimal estimation. MIT Press, Cambridge

    Google Scholar 

  • Gnawali O, Jang KY, Paek J, Vieira M, Govindan R, Greenstein B, Joki A, Estrin D, Kohler E (2006) The tenet architecture for tiered sensor networks. In: Proceedings of the 4th international conference on embedded networked sensor systems (SenSys ’06)

    Google Scholar 

  • Goel S, Imielinski T (2001) Prediction-based monitoring in sensor networks: taking lessons from mpeg. Comput Commun Rev 31:82–98

    Article  Google Scholar 

  • Gray J, Helland P, O’Neil P, Shasha D (1996) The dangers of replication and a solution. In: SIGMOD ’96

    Google Scholar 

  • Hellerstein JL, Diao Y, Parekh S, Tilbury DM (2004) Feedback control of computing systems. Wiley/IEEE Press, New York

    Book  Google Scholar 

  • Intanagonwiwat C, Govindan R, Estrin D, Heidemann J, Silva F (2003) Directed diffusion for wireless sensor networking. IEEE/ACM Trans Netw 11(1):2–16

    Article  Google Scholar 

  • Jain A, Chang EY, Wang YF (2004) Adaptive stream resource management using Kalman filters. In: Proceedings of the 2004 ACM SIGMOD international conference on management of data (SIGMOD ’04). ACM Press, New York, pp 11–22

    Chapter  Google Scholar 

  • Jensen CS, Lin D, Ooi BC (2004) Query and update efficient b+-tree based indexing of moving objects. In: Proceedings of the thirtieth international conference on very large data bases (VLDB ’04), vol 30, pp 768–779

    Google Scholar 

  • Jeung H, Yiu ML, Zhou X, Jensen CS (2010) Path prediction and predictive range querying in road network databases. VLDB J 19:585–602

    Article  Google Scholar 

  • Jiang H, Jin S, Wang C (2011) Prediction or not? An energy-efficient framework for clustering-based data collection in wireless sensor networks. IEEE Trans Parallel Distrib Syst 22(6):1064–1071

    Article  Google Scholar 

  • Jiang X, Chen NY, Hong JI, Wang K, Takayama L, Landay JA (2004) Siren: context-aware computing for firefighting. In: Proceedings of second international conference on pervasive computing

    Google Scholar 

  • Kang KD, Oh J, Son SH (2007) Chronos: feedback control of a real database system performance. In: RTSS

    Google Scholar 

  • Kang KD, Son SH, Stankovic JA (2004) Managing deadline miss ratio and sensor data freshness in real-time databases. IEEE Trans Knowl Data Eng 16(10):1200–1216

    Article  Google Scholar 

  • Lazaridis I, Mehrotra S (2003) Capturing sensor-generated time series with quality guarantees. In: Proceedings of 19th international conference on data engineering, 2003, pp 429–440

    Google Scholar 

  • Le Borgne YA, Santini S, Bontempi G (2007) Adaptive model selection for time series prediction in wireless sensor networks. Signal Process 87:3010–3020

    Article  MATH  Google Scholar 

  • Lee EA (2008) Cyber physical systems: design challenges. Tech rep UCB/EECS-2008-8, EECS Department, University of California, Berkeley

  • Li M, Ganesan D, Shenoy P (2006) Presto: feedback-driven data management in sensor networks. In: Proceedings of the 3rd conference on networked systems design & implementation (NSDI’06)

    Google Scholar 

  • Lu C, Stankovic JA, Son SH, Tao G (2002) Feedback control real-time scheduling: framework, modeling, and algorithms. Real-Time Syst 23(1–2):85–126

    Article  MATH  Google Scholar 

  • Lu C, Wang X, Koutsoukos X (2005) Feedback utilization control in distributed real-time systems with end-to-end tasks. IEEE Trans Parallel Distrib Syst 16(6):550–561

    Article  Google Scholar 

  • Madden SR, Franklin MJ, Hellerstein JM, Hong W (2005) Tinydb: an acquisitional query processing system for sensor networks. ACM Trans Database Syst 30(1):122–173

    Article  Google Scholar 

  • Mathiason G, Andler SF, Son SH (2008) Virtual full replication for scalable and adaptive real-time communication in wireless-sensor networks. In: Proceedings of the second intl conference on sensor technologies and applications (SENSORCOMM 2008)

    Google Scholar 

  • Mohapatra P, Gui C, Li J (2004) Group communications in mobile ad hoc networks. Computer 37(2):52–59

    Article  Google Scholar 

  • de Morais Cordeiro C, Gossain H, Agrawal D (2003) Multicast over wireless mobile ad hoc networks: present and future directions. IEEE Netw 17(1):52–59

    Article  Google Scholar 

  • Oh J, Kang KD (2007) An approach for real-time database modeling and performance management. In: Real time and embedded technology and applications symposium, 2007 (RTAS ’07). 13th. IEEE Press, New York, pp 326–336

    Chapter  Google Scholar 

  • Olston C, Loo BT, Widom J (2001) Adaptive precision setting for cached approximate values. SIGMOD Rec 30(2):355–366

    Article  Google Scholar 

  • Padmanabhan P, Gruenwald L, Vallur A, Atiquzzaman M (2008) A survey of data replication techniques for mobile ad hoc network databases. VLDB J 17:1143–1164

    Article  Google Scholar 

  • Pattem S, Krishnamachari B, Govindan R (2008) The impact of spatial correlation on routing with compression in wireless sensor networks. ACM Trans Sens Netw 4:24:1–24:33

    Article  Google Scholar 

  • Peddi P, DiPippo LC (2002) A replication strategy for distributed real-time object-oriented databases. In: Symposium on object-oriented real-time distributed computing, pp 129–136

    Google Scholar 

  • Pelanis M, Šaltenis S, Jensen CS (2006) Indexing the past, present, and anticipated future positions of moving objects. ACM Trans Database Syst 31:255–298

    Article  Google Scholar 

  • Ramamritham K, Son SH, Dipippo LC (2004) Real-time databases and data services. Real-Time Syst 28(2–3):179–215

    Article  MATH  Google Scholar 

  • Raniwala A, cker Chiueh T (2005) Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. In: Proceedings of 24th annual joint conference of the IEEE computer and communications societies (INFOCOM 2005), vol 3. IEEE Press, New York, pp 2223–2234

    Chapter  Google Scholar 

  • Ratnasamy S, Karp B, Yin L, Yu F, Estrin D, Govindan R, Shenker S (2002) Ght: a geographic hash table for data-centric storage. In: Proceedings of the 1st ACM international workshop on wireless sensor networks and applications (WSNA ’02)

    Google Scholar 

  • Santini S, Romer K (2006) An adaptive strategy for quality-based data reduction in wireless sensor networks. In: Proc INSS

    Google Scholar 

  • Selavo L, Wood A, Cao Q, Sookoor T, Liu H, Srinivasan A, Wu Y, Kang W, Stankovic J, Young D, Porter J (2007) Luster: wireless sensor network for environmental research. In: Proceedings of the 5th international conference on embedded networked sensor systems (SenSys ’07)

    Google Scholar 

  • Sha K, Shi W, Watkins O (2006) Using wireless sensor networks for fire rescue applications: requirements and challenges. In: IEEE international conference on electro/information technology

    Google Scholar 

  • Son SH (1988) Replicated data management in distributed database systems. SIGMOD Rec 17(4):62–69

    Article  Google Scholar 

  • Stankovic JA, Lee I, Mok A, Rajkumar R (2005) Opportunities and obligations for physical computing systems. Computer 38(11):23–31

    Article  Google Scholar 

  • Tatbul N, Çetintemel U, Zdonik S, Cherniack M, Stonebraker M (2003) Load shedding in a data stream manager. In: Proceedings of the 29th international conference on very large data bases (VLDB ’2003)

    Google Scholar 

  • Thiagarajan A, Madden S (2008) Querying continuous functions in a database system. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data (SIGMOD ’08). ACM, New York, pp 791–804

    Chapter  Google Scholar 

  • Wang X, Jia D, Lu C, Koutsoukos X (2007) DEUCON: Decentralized End-to-End Utilization Control for Distributed Real-Time Systems. IEEE Trans Parallel Distrib Syst 18(7):996–1009

    Article  Google Scholar 

  • Wei G, Ling Y, Guo B, Xiao B, Vasilakos AV (2011) Prediction-based data aggregation in wireless sensor networks: combining grey model and Kalman filter. Comput Commun 34(6):793–802

    Article  Google Scholar 

  • Wei Y, Son SH, Stankovic JA, Kang KD (2003) Qos management in replicated real time databases. In: Proceedings of the 24th IEEE international real-time systems symposium (RTSS ’03)

    Google Scholar 

  • Wolfson O, Chamberlain S, Dao S, Jiang L, Mendez G (1998) Cost and imprecision in modeling the position of moving objects. In: Proceedings of the fourteenth international conference on data engineering (ICDE ’98). IEEE Comput Soc, Los Alamitos, Washington, DC, USA, pp 588–596

    Google Scholar 

  • Zhou Y, Kang KD (2009) Integrating proactive and reactive approaches for robust real-time data services. In: Proceedings of the 30th IEEE international real-time systems symposium (RTSS ’09)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woochul Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, W., Son, S.H. & Stankovic, J.A. Quality-aware data abstraction layer for collaborative 2-tier sensor network applications. Real-Time Syst 48, 463–498 (2012). https://doi.org/10.1007/s11241-012-9154-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11241-012-9154-0

Keywords

Navigation